Align Inositol transport system ATP-binding protein (characterized)
to candidate H281DRAFT_03380 H281DRAFT_03380 monosaccharide ABC transporter ATP-binding protein, CUT2 family
Query= reanno::Phaeo:GFF717 (261 letters) >FitnessBrowser__Burk376:H281DRAFT_03380 Length = 515 Score = 168 bits (426), Expect = 2e-46 Identities = 90/240 (37%), Positives = 144/240 (60%), Gaps = 5/240 (2%) Query: 7 LIRMQGIEKHFGSVIALAGVSVDVFPGECHCLLGDNGAGKSTFIKTMSGVHKPTKGDILF 66 +++++G+ K F V+AL G+ +D+ GE H + G+NGAGKST +K +SG + G I + Sbjct: 22 ILQLKGVSKRFPGVVALDGIDLDLRSGEVHAVCGENGAGKSTLMKIISGQYHADDGVICY 81 Query: 67 EGQPLHFADPRDAIAAGIATVHQHLAMIPLMSVSRNFFMGNEPIRKIGPLKLFDHDYANR 126 EG+P+ FA DA AAGIA +HQ L ++P +SV+ N ++ EP K GP D+ N Sbjct: 82 EGKPVQFASTSDAQAAGIAIIHQELNLVPHLSVAENIYLAREP--KRGP--FVDYRTLNA 137 Query: 127 ITMEEMRKMGINLRGPDQAVGTLSGGERQTVAIARAVHFGAKVLILDEPTSALGVRQTAN 186 ++++G+N+ P VG LS ++Q V IA+A+ A+VLI+DEPTS+L +T Sbjct: 138 NAQRCLQRIGLNV-SPTTLVGALSIAQQQMVEIAKALSLDARVLIMDEPTSSLTESETVQ 196 Query: 187 VLATIDKVRKQGVAVVFITHNVRHALAVGDRFTVLNRGKTLGTAQRGDISAEELQDMMAG 246 + I ++R GVA+++I+H + + DR TVL G+ + T+ + E+ M G Sbjct: 197 LFRIIRELRADGVAILYISHRLDEMAEIVDRVTVLRDGRHIATSDFASTTINEIVARMVG 256 Score = 80.1 bits (196), Expect = 9e-20 Identities = 58/224 (25%), Positives = 96/224 (42%), Gaps = 5/224 (2%) Query: 26 VSVDVFPGECHCLLGDNGAGKSTFIKTMSGVHKPTKGDILFEGQPLHFADPRDAIAAGIA 85 +S D+ GE G GAG++ + + G + G I P+ PR+AI GIA Sbjct: 290 LSFDLRKGEILGFAGLMGAGRTEVARAIFGAERLDSGSIQLGDTPVTIRSPREAIRHGIA 349 Query: 86 TVHQHLAMIPL---MSVSRNFFMGNEPIRKIGPLKLFDHDYANRITMEEMRKMGINLRGP 142 + + L M V+ N + N +R I I +R++ I Sbjct: 350 YLSEDRKKDGLALSMPVAANITLSN--VRAISSRGFLRFSEETAIAERYVRELAIRTPTV 407 Query: 143 DQAVGTLSGGERQTVAIARAVHFGAKVLILDEPTSALGVRQTANVLATIDKVRKQGVAVV 202 Q LSGG +Q + I++ ++ G+++L DEPT + V + +D++ GV VV Sbjct: 408 KQIARNLSGGNQQKIVISKWLYRGSRILFFDEPTRGIDVGAKYAIYKLMDRLAADGVGVV 467 Query: 203 FITHNVRHALAVGDRFTVLNRGKTLGTAQRGDISAEELQDMMAG 246 I+ + L + DR V + G + S EE+ +G Sbjct: 468 LISSELPELLGMTDRIAVFHEGLITAVLETRQTSQEEILHYASG 511 Lambda K H 0.321 0.137 0.395 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 298 Number of extensions: 13 Number of successful extensions: 4 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 2 Number of HSP's successfully gapped: 2 Length of query: 261 Length of database: 515 Length adjustment: 30 Effective length of query: 231 Effective length of database: 485 Effective search space: 112035 Effective search space used: 112035 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.4 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.9 bits) S2: 49 (23.5 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory