Align 3-hydroxyacyl-CoA dehydrogenase PaaC (EC 1.1.1.-) (characterized)
to candidate H281DRAFT_04595 H281DRAFT_04595 3-hydroxyacyl-CoA dehydrogenase
Query= reanno::Marino:GFF2749 (506 letters) >lcl|FitnessBrowser__Burk376:H281DRAFT_04595 H281DRAFT_04595 3-hydroxyacyl-CoA dehydrogenase Length = 521 Score = 299 bits (765), Expect = 2e-85 Identities = 178/492 (36%), Positives = 258/492 (52%), Gaps = 7/492 (1%) Query: 10 VAVVGAGAMGSGIAQVAAQAGHQVYLHDQREGAAEAGRDGIAKQLQRRVDKGKMQQQELD 69 + +VG GAMG GIAQ+AA AG V L+D A A RD +A+ + KGK++Q Sbjct: 11 IGIVGTGAMGRGIAQIAALAGLTVRLYDANPAAIGAARDYLAETFAKLTAKGKLEQARSL 70 Query: 70 DVIGRIHPVAKLDDVADAGLVIEAIIEDLQIKRQLLASLEDLCTADAILATNTSSISVTA 129 + + + D+AD LVIEAI+E L++K+ L LE + + +LA+NTSS+S+TA Sbjct: 71 AALANVTAAHAITDLADCDLVIEAIVEKLEVKQALFRELETVVSGRCVLASNTSSLSITA 130 Query: 130 LGADMSKPERLVGMHFFNPAPLMALVEVVMGLATSKTVADTVHATATAWGKKPVYATSTP 189 + A + P R+ G HFFNP PLM +VEV+ GL + + D + A G PV A P Sbjct: 131 IAAGCTDPSRVAGYHFFNPVPLMKVVEVIDGLRSDRQAGDALMDLARRMGHTPVRAKDMP 190 Query: 190 GFIVNRVARPFYAESLRLLQEQATDAATLDAIIREAGQFRMGAFELTDLIGHDVNYAVTS 249 GFIVN R E LR+ E +D I+RE FR+G FEL DL DV++ V Sbjct: 191 GFIVNHAGRGMNTEGLRVAGEGVASFVDIDRIMREQAGFRLGPFELLDLTALDVSHPVME 250 Query: 250 SVFNSYYQDPRFLPSLIQKELVEAGRLGRKSGQGFYPYGESAEKPQPKTEPAHQSDESVI 309 S+++ +Y++PRF PS I + G LGRK+G+GFY Y + ++ +T SV Sbjct: 251 SIYHQFYEEPRFTPSPITGTRLAGGLLGRKTGEGFYRYEDGKQQAPAETPAPAALPTSVW 310 Query: 310 IAEGNPGVAAPLLERLKAAGLTIIERDGPGQIRFGDAVLALTD-GRMATERAACEGV--A 366 +++ ++E + AG+ + + P D+++ +T G AT A E + + Sbjct: 311 VSKRYREAYQAVVELVGKAGVKLDDGASPA----ADSLIVVTPFGHDATTAAVDEALDAS 366 Query: 367 NLVLFDLAFDYSKASRLALAPADQASDAAVSCACALLQKAGIEVSLIADRPGLVIMRTVA 426 +V D F R L + AA AL G+ V++I D G V R VA Sbjct: 367 RVVAIDALFPLVGTQRRTLMTTPATTRAARDAGHALFSADGVPVTVIRDSTGFVAQRVVA 426 Query: 427 MLANEAADAALHGVATVADIDLAMKAGLNYPDGPLSWSDRLGAGHVFKVLTNIQTSYAED 486 + N D A +AT DIDLA+ GL YP GPL+ D LGA + +L N+ + Sbjct: 427 TIVNIGCDIAQKQIATPEDIDLAVMLGLGYPRGPLALGDALGAKTILTILRNMFDVLGDP 486 Query: 487 RYRPALLLRKNA 498 RYRP+ L + A Sbjct: 487 RYRPSPWLARRA 498 Lambda K H 0.318 0.133 0.375 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 610 Number of extensions: 23 Number of successful extensions: 5 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 506 Length of database: 521 Length adjustment: 35 Effective length of query: 471 Effective length of database: 486 Effective search space: 228906 Effective search space used: 228906 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.3 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.7 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory