Align 3-hydroxybutyryl-CoA dehydrogenase (EC 1.1.1.157); 3-hydroxyacyl-CoA dehydrogenase (EC 1.1.1.35); short-chain-enoyl-CoA hydratase (EC 4.2.1.150) (characterized)
to candidate H281DRAFT_00916 H281DRAFT_00916 short chain enoyl-CoA hydratase /3-hydroxyacyl-CoA dehydrogenase
Query= BRENDA::A4YDS4 (651 letters) >FitnessBrowser__Burk376:H281DRAFT_00916 Length = 694 Score = 183 bits (464), Expect = 3e-50 Identities = 127/399 (31%), Positives = 206/399 (51%), Gaps = 26/399 (6%) Query: 2 KVTVIGSGVMGHGIAELAAIAGNEVWMNDISTEILQQAMERIKWSLSKLRESGSLK-EGV 60 +V VIG+G MG GIA AG V + + E L + + I+ + + G LK E + Sbjct: 295 QVAVIGAGTMGGGIAMNFISAGIPVTLLETKQEALDRGLATIRKNYEATVKKGKLKPEAL 354 Query: 61 EQVLARIHPETDQAQALKGSDFVIEAVKEDLELKRTIFRNAEAHASPSAVLATNTSSLPI 120 E+ +A I P T LK +D ++EAV E+L +K +F+ + A A+LA+NTS+L + Sbjct: 355 EERMALITP-TLSYDDLKNADLIVEAVFEELGVKEQVFKRLDEVAKSGAILASNTSTLDV 413 Query: 121 SEIASVLKSPQRVVGMHFFNPPVLMPLVEIVRGKDTSDEVVKTTAEMAKSMNKETIVVKD 180 +IA+ + PQ VVGMHFF+P +M L+E+VRGK+T+ +V+ T ++AK + K +V Sbjct: 414 DKIAAFTRRPQDVVGMHFFSPANVMKLLEVVRGKETAKDVLATVMKLAKKIKKTAVVSGV 473 Query: 181 VPGFFVNRVLLRIMEAGCYLVEKGIASIQEVDSSAIEELGFPMGVFLLADYTGLDIGYSV 240 GF NR++ + + +++++G Q VD AIE+ GF MG F ++D G DIG+++ Sbjct: 474 CDGFIGNRMIEQYIRQALFMLDEGALPAQ-VD-RAIEKFGFAMGPFRMSDLAGNDIGWAI 531 Query: 241 WKAVTARGFKAFPCSSTEKLVSQGKLGVKSGSGYYQYPS------PGKFVRPTLPSTS-- 292 K + ++L G+ G K+G G+Y Y + P K V + + S Sbjct: 532 RKRRYEEHPEMHYSKIADRLCETGRFGQKTGGGWYDYKAGDRTAHPSKLVDDMIVAYSNE 591 Query: 293 -----KKLG-----RYLISPAVNEVSYLLREGIVGK-DDAEKGCVLGLGLP---KGILSY 338 +K+G L+ VNE + +L EGI K D + + G G P G + Y Sbjct: 592 TNTQRRKIGDDEIVERLVFALVNEGAKILEEGIASKPSDIDMVYLTGYGFPLYRGGPMLY 651 Query: 339 ADEIGIDVVVNTLEEMRQTSGMDHYSPDPLLLSMVKEGK 377 AD +G+ V + D + P + + +G+ Sbjct: 652 ADTVGLYNVERAIRRYASQPNGDAWQLAPSIAELAAQGR 690 Score = 105 bits (263), Expect = 5e-27 Identities = 61/190 (32%), Positives = 105/190 (55%), Gaps = 6/190 (3%) Query: 407 LAWIVLNRPTRYNAINGDMIREINQALDSLEEREDVRVIAITGQGRVFSAGADVTEFGSL 466 +A I LN P N + I + ++ + ++ I +TG G+ FS GAD+TEF + Sbjct: 11 VAVITLNNPP-VNGLGLSTRAGIVEGIERAQNDAAIKAIVLTGAGKAFSGGADITEFNTP 69 Query: 467 TPVKAMIASRKFHEVFMKIQFLTKPVIAVINGLALGGGMELALSADFRVASKTAEMGQPE 526 + + V ++ KPV+A I+ +A+GGG+ELAL A +R+A+ A++ PE Sbjct: 70 KATQEPTLAT----VIKTVEGSPKPVVAAIHSVAMGGGLELALGAHYRIAAPGAQIALPE 125 Query: 527 INLGLIPGGGGTQRLSRLSG-RKGLELVLTGRRVKAEEAYRLGIVEFLAEPEELESEVRK 585 + LG++PG GGTQRL R G L ++++G V +++ R G+ + LA+ + E+ + Sbjct: 126 VKLGILPGAGGTQRLPRAIGLEAALNMIVSGAPVMSQDLARSGLFDELADGDLTEAALAF 185 Query: 586 LANAIAEKSP 595 A++ P Sbjct: 186 ARKVGAKEGP 195 Lambda K H 0.316 0.134 0.377 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 964 Number of extensions: 53 Number of successful extensions: 7 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 2 Number of HSP's successfully gapped: 2 Length of query: 651 Length of database: 694 Length adjustment: 39 Effective length of query: 612 Effective length of database: 655 Effective search space: 400860 Effective search space used: 400860 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.3 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.6 bits) S2: 54 (25.4 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory