GapMind for catabolism of small carbon sources

 

Aligments for a candidate for acnD in Paraburkholderia bryophila 376MFSha3.1

Align 2-methylcitrate dehydratase (2-methyl-trans-aconitate forming) (EC 4.2.1.117) (characterized)
to candidate H281DRAFT_02981 H281DRAFT_02981 aconitase /2-methylcitrate dehydratase (trans-methylaconitate-forming)

Query= BRENDA::Q8EJW3
         (867 letters)



>lcl|FitnessBrowser__Burk376:H281DRAFT_02981 H281DRAFT_02981
           aconitase /2-methylcitrate dehydratase
           (trans-methylaconitate-forming)
          Length = 865

 Score = 1454 bits (3763), Expect = 0.0
 Identities = 718/861 (83%), Positives = 779/861 (90%)

Query: 5   MNTQYRKPLPGTALDYFDTREAIEAIAPGAYAKLPYTSRVLAENLVRRCEPEMLTASLKQ 64
           MNT YRK LPGT LD+FD R A++AI  GAY KLPYTSRVLAENLVRRC+P  L ASLKQ
Sbjct: 1   MNTAYRKRLPGTQLDFFDARAAVDAIQAGAYDKLPYTSRVLAENLVRRCDPVTLVASLKQ 60

Query: 65  IIESKQELDFPWFPARVVCHDILGQTALVDLAGLRDAIAAKGGDPAQVNPVVPTQLIVDH 124
           I+E K+ELDFPWFPARVVCHDILGQTALVDLAGLRDAIAA+GGDPA VNPVVPTQL+VDH
Sbjct: 61  IVERKRELDFPWFPARVVCHDILGQTALVDLAGLRDAIAAQGGDPAMVNPVVPTQLVVDH 120

Query: 125 SLAVEYGGFDKDAFAKNRAIEDRRNEDRFHFINWTQKAFKNIDVIPQGNGIMHQINLERM 184
           SLAVE GGFD DAFAKNRAIEDRRNEDRF FINWT++AF+N+DVIP GNGI+HQINLERM
Sbjct: 121 SLAVECGGFDPDAFAKNRAIEDRRNEDRFDFINWTKRAFRNVDVIPPGNGILHQINLERM 180

Query: 185 SPVIHARNGVAFPDTLVGTDSHTPHVDALGVIAIGVGGLEAESVMLGRASYMRLPDIIGV 244
           SPV+   +GVAFPDTLVGTDSHTP VDALGVIAIGVGGLEAESVMLGRASYMRLPDI+GV
Sbjct: 181 SPVVQVNDGVAFPDTLVGTDSHTPMVDALGVIAIGVGGLEAESVMLGRASYMRLPDIVGV 240

Query: 245 ELTGKPQPGITATDIVLALTEFLRAQKVVSSYLEFFGEGAEALTLGDRATISNMTPEFGA 304
           +LTGKP  GITATD+VL+LTEFLR +KVV +YLEFFGEG   LTLGDRATI+NM PEFGA
Sbjct: 241 KLTGKPAEGITATDVVLSLTEFLRKEKVVGAYLEFFGEGTAKLTLGDRATIANMAPEFGA 300

Query: 305 TAAMFYIDQQTLDYLTLTGREAEQVKLVETYAKTAGLWSDDLKQAVYPRTLHFDLSSVVR 364
           TAAMFYID+QT+ YL LTGR+ E VKLVETYAK AGLW+D L  A Y R L FDLS+VVR
Sbjct: 301 TAAMFYIDEQTIKYLKLTGRDDELVKLVETYAKEAGLWADSLTHAEYERVLKFDLSTVVR 360

Query: 365 TIAGPSNPHARVPTSELAARGISGEVENEPGLMPDGAVIIAAITSCTNTSNPRNVIAAGL 424
           T+AGPSNPH R+P SELAARGISG+VENEPGLMPDGAVIIAAITSCTNT+NPRN+IAAGL
Sbjct: 361 TLAGPSNPHRRLPVSELAARGISGKVENEPGLMPDGAVIIAAITSCTNTNNPRNMIAAGL 420

Query: 425 LARNANAKGLTRKPWVKTSLAPGSKAVQLYLEEANLLPELESLGFGIVGFACTTCNGMSG 484
           LARNAN +GLTRKPW KTSLAPGSKAV LYLEEA LLPELE LGFG+V +ACT+CNGMSG
Sbjct: 421 LARNANRRGLTRKPWAKTSLAPGSKAVTLYLEEAGLLPELEQLGFGVVAYACTSCNGMSG 480

Query: 485 ALDPVIQQEVIDRDLYATAVLSGNRNFDGRIHPYAKQAFLASPPLVVAYAIAGTIRFDIE 544
           ALDP IQ+E+++RDLYATAVLSGNRNFDGRIHP+AKQAFLASPPLVVAYAIAGTIRFDIE
Sbjct: 481 ALDPAIQKEIVERDLYATAVLSGNRNFDGRIHPFAKQAFLASPPLVVAYAIAGTIRFDIE 540

Query: 545 KDVLGLDKDGKPVRLINIWPSDAEIDAVIAASVKPEQFRKVYEPMFDLSVDYGDKVSPLY 604
           KDVLG+D DG  V L +IWPSD EIDA++A+SVKPEQFRKVYEPMF +SVD  +K +PLY
Sbjct: 541 KDVLGVDADGNNVTLKDIWPSDEEIDAIVASSVKPEQFRKVYEPMFAVSVDTQEKANPLY 600

Query: 605 DWRPQSTYIRRPPYWEGALAGERTLKGMRPLAVLGDNITTDHLSPSNAIMMDSAAGEYLH 664
           DWRP STYIRRPPYWEGALAGERTL+GMR LAVLGDNITTDHLSPSNAI+ DSAAGEYL 
Sbjct: 601 DWRPMSTYIRRPPYWEGALAGERTLQGMRALAVLGDNITTDHLSPSNAILPDSAAGEYLT 660

Query: 665 KMGLPEEDFNSYATHRGDHLTAQRATFANPKLKNEMAIVDGKVKQGSLARIEPEGIVTRM 724
           KMGLPEEDFNSYATHRGDHLTAQRATFANP L+NEM I DGKVK GS ARIEPEG +TRM
Sbjct: 661 KMGLPEEDFNSYATHRGDHLTAQRATFANPTLRNEMVIEDGKVKAGSFARIEPEGKITRM 720

Query: 725 WEAIETYMDRKQPLIIIAGADYGQGSSRDWAAKGVRLAGVEAIVAEGFERIHRTNLVGMG 784
           WEAIETYM+RKQPLI+IAGADYGQGSSRDWAAKGVRLAG EAIVAEGFERIHRTNLVGMG
Sbjct: 721 WEAIETYMERKQPLIVIAGADYGQGSSRDWAAKGVRLAGAEAIVAEGFERIHRTNLVGMG 780

Query: 785 VLPLEFKAGENRATYGIDGTEVFDVIGSIAPRADLTVIITRKNGERVEVPVTCRLDTAEE 844
           VLPLEFK G NR T  IDGTE FDVIG   PR DLT++I R++GERVEVPVTCRLDTAEE
Sbjct: 781 VLPLEFKPGVNRITLAIDGTETFDVIGERKPRTDLTLVIHRRSGERVEVPVTCRLDTAEE 840

Query: 845 VSIYEAGGVLQRFAQDFLESN 865
           +SIYEAGGVLQRFAQDFLES+
Sbjct: 841 LSIYEAGGVLQRFAQDFLESS 861


Lambda     K      H
   0.318    0.136    0.397 

Gapped
Lambda     K      H
   0.267   0.0410    0.140 


Matrix: BLOSUM62
Gap Penalties: Existence: 11, Extension: 1
Number of Sequences: 1
Number of Hits to DB: 2256
Number of extensions: 93
Number of successful extensions: 1
Number of sequences better than 1.0e-02: 1
Number of HSP's gapped: 1
Number of HSP's successfully gapped: 1
Length of query: 867
Length of database: 865
Length adjustment: 42
Effective length of query: 825
Effective length of database: 823
Effective search space:   678975
Effective search space used:   678975
Neighboring words threshold: 11
Window for multiple hits: 40
X1: 16 ( 7.3 bits)
X2: 38 (14.6 bits)
X3: 64 (24.7 bits)
S1: 41 (21.7 bits)
S2: 56 (26.2 bits)

This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.

Links

Downloads

Related tools

About GapMind

Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.

A candidate for a step is "high confidence" if either:

where "other" refers to the best ublast hit to a sequence that is not annotated as performing this step (and is not "ignored").

Otherwise, a candidate is "medium confidence" if either:

Other blast hits with at least 50% coverage are "low confidence."

Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:

GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).

For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the preprint on GapMind for carbon sources, or view the source code.

If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know

by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory