Align malonate-semialdehyde dehydrogenase (EC 1.2.1.15); malonate-semialdehyde dehydrogenase (acetylating) (EC 1.2.1.18); methylmalonate-semialdehyde dehydrogenase (CoA-acylating) (EC 1.2.1.27) (characterized)
to candidate H281DRAFT_03178 H281DRAFT_03178 succinate semialdehyde dehydrogenase
Query= BRENDA::A0A081YAY7 (498 letters) >FitnessBrowser__Burk376:H281DRAFT_03178 Length = 486 Score = 248 bits (633), Expect = 3e-70 Identities = 157/446 (35%), Positives = 242/446 (54%), Gaps = 7/446 (1%) Query: 14 ADTGRTADVFNPSTGEAVRKVPLADRETMQQAIDAAKAAFPAWRNTPPAKRAQVLFRFKQ 73 AD G T +V NP+TGE V VP ++AIDAA AA+PAWR + +RA +L ++ Sbjct: 25 ADDGSTFEVVNPATGEVVATVPRMGTAETRRAIDAANAAWPAWRASTAKQRAVILRKWHD 84 Query: 74 LLEANEERIVKLISEEHGKTIEDAAGELKRGIENVEYATAAPEILKGEYSRNVGPNIDAW 133 L+ N + + +++ E GK + +A GE++ +E+ + L G+ + Sbjct: 85 LMLENADDLALILTTEQGKPLAEAKGEIQYAASFLEWFAEEGKRLNGDTIPTPANDKRIV 144 Query: 134 SDFQPIGVVAGITPFNFPAMVPLWMYPLAIACGNTFILKPSERDPSSTLLIAELFHEAGL 193 +P+GV A ITP+NFPA + A+A G I+KP+E P S L +A L AG+ Sbjct: 145 VTKEPVGVCAAITPWNFPAAMITRKVGPALAAGCPIIVKPAEATPLSALALAVLAERAGV 204 Query: 194 PKGVLNVVHGDKGAVDA-LIEAPEVKALSFVGSTPIAEYIYSEGTKRGKRVQALGGAKNH 252 P+GV NVV G+ A+ A + P V+ LSF GSTP+ + ++ K+V G Sbjct: 205 PRGVFNVVTGEPKAIGAEMTGNPIVRKLSFTGSTPVGRLLMAQCAPTVKKVSLELGGNAP 264 Query: 253 AVLMPDADLDNAVSALMGAAYGSCGERCMAISVAVCVGDQIADALVQKLVPQIKGLKIGA 312 ++ DADLD AV+ + + Y + G+ C+ + V D++ DA KL ++ L +G Sbjct: 265 FIVFDDADLDAAVAGAIASKYRNSGQTCVCTN-RFYVHDKVYDAFAAKLRAAVEQLTVGR 323 Query: 313 GTSCGLDMGPLVTGAARDKVTGYIDTGVAQGAELVVDGRGYKVAGHENGFFLGGTLFDRV 372 GT G+ GPL+ AA KV +I+ +A+GA +V G+ + + GH GFF L D V Sbjct: 324 GTEAGVTQGPLINEAAVLKVESHIEDALAKGARVVTGGKRHAL-GH--GFFEPTILAD-V 379 Query: 373 TPEMTIYKEEIFGPVLCIVRVNSLEEAMQLINDHEYGNGTCIFTRDGEAARLFCDEIEVG 432 TP+M + ++E FGP+ + R +S EE + L ND E+G + ++RD + +E G Sbjct: 380 TPDMKVARDETFGPLAPLFRFSSDEEVIALANDTEFGLASYFYSRDIGRVWRVAEALEYG 439 Query: 433 MVGVNVPLPVPVAYHSFGGWKRSLFG 458 MVG+N L + FGG K+S G Sbjct: 440 MVGINTGL-ISNEVAPFGGVKQSGLG 464 Lambda K H 0.319 0.137 0.411 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 607 Number of extensions: 33 Number of successful extensions: 5 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 498 Length of database: 486 Length adjustment: 34 Effective length of query: 464 Effective length of database: 452 Effective search space: 209728 Effective search space used: 209728 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.4 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.7 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory