Align Ribose ABC transporter ATPase; SubName: Full=Sugar ABC transporter ATP-binding protein; SubName: Full=Sugar ABC transporter ATPase (characterized, see rationale)
to candidate H281DRAFT_05226 H281DRAFT_05226 monosaccharide ABC transporter ATP-binding protein, CUT2 family
Query= uniprot:A0A1N7TZ92 (517 letters) >FitnessBrowser__Burk376:H281DRAFT_05226 Length = 531 Score = 715 bits (1846), Expect = 0.0 Identities = 376/510 (73%), Positives = 429/510 (84%), Gaps = 8/510 (1%) Query: 8 AVLSVSGIGKTYAQPVLSDITLTLNRGEVLALTGENGAGKSTLSKIIGGLVTPTTGHMQF 67 A+LSVSGIGKTYA+PVL+D++L+L GEVLALTGENGAGKSTLSKIIGGLV PT G M+ Sbjct: 11 AILSVSGIGKTYAEPVLADVSLSLRAGEVLALTGENGAGKSTLSKIIGGLVDPTAGTMRL 70 Query: 68 NGQDFRPGSRTQAEELGVRMVMQELNLLPTLTVAENLFLDNLPS----HCGWISRKQLRK 123 GQ + P SRT+AE LGVRMVMQELNLLPTL+VAENLFL+ LP GWI R++LR+ Sbjct: 71 AGQPYAPASRTEAEALGVRMVMQELNLLPTLSVAENLFLNRLPRAGAFSFGWIDRRKLRE 130 Query: 124 AAIEAMAQVGLDAIDPDTLVGSLGIGHQQMVEIARNLIGDCHVLILDEPTAMLTAREVEM 183 A AMAQVGLDAI PDTLVG LGIGHQQMVEIARNLI DC VLILDEPTAMLTAREV++ Sbjct: 131 DARHAMAQVGLDAIHPDTLVGELGIGHQQMVEIARNLIDDCRVLILDEPTAMLTAREVDL 190 Query: 184 LFEQITRLQARGVAIIYISHRLEELARVAQRIAVLRDGKLVCVEPMANYNSEQLVTLMVG 243 LFEQI RL+ARGVA++YISHRLEELARVA++IAVLRDG+LV V+ MAN S+++VT MVG Sbjct: 191 LFEQIDRLKARGVALVYISHRLEELARVAEQIAVLRDGRLVHVDAMANLTSDEIVTWMVG 250 Query: 244 RELGEHIDLGPRTIGGPALTVKGLTRSDKVRDVSFEVRAGEIYGISGLIGAGRTELLRLI 303 RELGE IDLG R IG P L V LTR VRDVSFEVRAGEI+G+SGLIGAGRTEL+RLI Sbjct: 251 RELGEQIDLGVRNIGAPLLKVDRLTRGKVVRDVSFEVRAGEIFGVSGLIGAGRTELMRLI 310 Query: 304 FGADLADSGTVAL----GSPAQVVSIRSPVDAVGHGIALITEDRKGEGLLLTQSISANIA 359 +GAD DSG VAL G+P V I SP DAV GIALITEDRKGEGLLL Q I+AN++ Sbjct: 311 YGADQKDSGAVALAATPGAPPTPVRIDSPSDAVRAGIALITEDRKGEGLLLPQPIAANVS 370 Query: 360 LGNMPEISGGGVVNSRDETALAKRQIDAMRIRSSSPAQLVSELSGGNQQKVVIGRWLERD 419 LGN+ ++ G+V+++ E ALAK+QIDAMRIRSS P Q+V ELSGGNQQKVVIGRWL RD Sbjct: 371 LGNIGSVARHGIVDAKRENALAKKQIDAMRIRSSGPGQIVGELSGGNQQKVVIGRWLARD 430 Query: 420 CSVMLFDEPTRGIDVGAKFDIYALLGELTRQGKALVVVSSDLRELMLICDRIGVLSAGRL 479 C V+LFDEPTRGIDVGAKFDIY L+G L R+G+ALVVVSSDLRELMLICDRIGV+SAG L Sbjct: 431 CRVLLFDEPTRGIDVGAKFDIYGLMGALAREGRALVVVSSDLRELMLICDRIGVMSAGSL 490 Query: 480 IETFERDSWTQDELLAAAFAGYQKRDALLN 509 FERD+W+QD LLAAAFAGY+ R+ALL+ Sbjct: 491 TGVFERDTWSQDALLAAAFAGYRSREALLH 520 Lambda K H 0.319 0.136 0.382 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 928 Number of extensions: 37 Number of successful extensions: 7 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 517 Length of database: 531 Length adjustment: 35 Effective length of query: 482 Effective length of database: 496 Effective search space: 239072 Effective search space used: 239072 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.4 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.7 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory