Align Aromatic amino acid:H+ symporter, AroP of 457 aas and 12 TMSs (Cosgriff and Pittard 1997). Transports phenylalanine, tyrosine and tryptophan (characterized)
to candidate H281DRAFT_04042 H281DRAFT_04042 aromatic amino acid:proton symporter, AAT family
Query= TCDB::P15993 (457 letters) >FitnessBrowser__Burk376:H281DRAFT_04042 Length = 506 Score = 651 bits (1680), Expect = 0.0 Identities = 318/449 (70%), Positives = 368/449 (81%), Gaps = 2/449 (0%) Query: 5 QQHGEQLKRGLKNRHIQLIALGGAIGTGLFLGSASVIQSAGPGIILGYAIAGFIAFLIMR 64 QQ G LKRGLKNRHIQLIALGGAIGTGLFLGSASV+Q+AGP +ILGYAI G IAF+IMR Sbjct: 51 QQDG--LKRGLKNRHIQLIALGGAIGTGLFLGSASVLQAAGPSMILGYAIGGVIAFMIMR 108 Query: 65 QLGEMVVEEPVAGSFSHFAYKYWGSFAGFASGWNYWVLYVLVAMAELTAVGKYIQFWYPE 124 QLGEMV +EPVAGSFSHFAYKYWG F GF SGWNYWVLYVLV+MAELTAVG Y+ +W+P Sbjct: 109 QLGEMVAQEPVAGSFSHFAYKYWGDFPGFLSGWNYWVLYVLVSMAELTAVGTYVHYWWPG 168 Query: 125 IPTWVSAAVFFVVINAINLTNVKVFGEMEFWFAIIKVIAVVAMIIFGGWLLFSGNGGPQA 184 +PTWVSA V F INAINL NVK +GE EFWFAIIKV+AV+ MI+FGG+LL SG+GGPQA Sbjct: 169 VPTWVSALVCFAGINAINLANVKAYGETEFWFAIIKVVAVIGMILFGGYLLVSGHGGPQA 228 Query: 185 TVSNLWDQGGFLPHGFTGLVMMMAIIMFSFGGLELVGITAAEADNPEQSIPKATNQVIYR 244 ++SNLW GGF PHGF GL M+A+IMFSFGGLEL+GITAAEAD P++SIPKA NQVIYR Sbjct: 229 SISNLWSHGGFFPHGFHGLFTMLAVIMFSFGGLELIGITAAEADEPQKSIPKAVNQVIYR 288 Query: 245 ILIFYIGSLAVLLSLMPWTRVTADTSPFVLIFHELGDTFVANALNIVVLTAALSVYNSCV 304 ILIFYI SLAVLLSL PW V A SPFV+IF ++G T AN LN+VVLTAALSVYNS V Sbjct: 289 ILIFYICSLAVLLSLYPWNEVAAGGSPFVMIFSQIGSTLTANVLNVVVLTAALSVYNSGV 348 Query: 305 YCNSRMLFGLAQQGNAPKALASVDKRGVPVNTILVSALVTALCVLINYLAPESAFGLLMA 364 Y NSRML+GLA+QGNAP+AL VD+RGVP I +SAL T CV++NYL P A GLLMA Sbjct: 349 YANSRMLYGLAEQGNAPRALMKVDRRGVPYMAIGLSALATFTCVIVNYLIPAEALGLLMA 408 Query: 365 LVVSALVINWAMISLAHMKFRRAKQEQGVVTRFPALLYPLGNWICLLFMAAVLVIMLMTP 424 LVV+ALV+NWA+ISL H+K RRA G F + +P+ NWICL FMA +LVI+ MTP Sbjct: 409 LVVAALVLNWALISLTHLKSRRAMVAAGETLVFKSFWFPVSNWICLAFMALILVILAMTP 468 Query: 425 GMAISVYLIPVWLIVLGIGYLFKEKTAKA 453 G+++SV L+PVWL+V+ GY FK + A A Sbjct: 469 GLSVSVLLVPVWLVVMWAGYAFKRRRAAA 497 Lambda K H 0.328 0.141 0.434 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 775 Number of extensions: 41 Number of successful extensions: 1 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 457 Length of database: 506 Length adjustment: 34 Effective length of query: 423 Effective length of database: 472 Effective search space: 199656 Effective search space used: 199656 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 15 ( 7.1 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 40 (21.7 bits) S2: 51 (24.3 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory