Align D-ribose transporter ATP-binding protein; SubName: Full=Putative xylitol transport system ATP-binding protein; SubName: Full=Sugar ABC transporter ATP-binding protein (characterized, see rationale)
to candidate H281DRAFT_03380 H281DRAFT_03380 monosaccharide ABC transporter ATP-binding protein, CUT2 family
Query= uniprot:A0A1N7TX47 (495 letters) >FitnessBrowser__Burk376:H281DRAFT_03380 Length = 515 Score = 372 bits (954), Expect = e-107 Identities = 214/492 (43%), Positives = 298/492 (60%), Gaps = 5/492 (1%) Query: 6 LLQAEHVAKAYAGVPALRDGRLSLRAGSVHALCGGNGAGKSTFLSILMGITQRDAGSILL 65 +LQ + V+K + GV AL L LR+G VHA+CG NGAGKST + I+ G D G I Sbjct: 22 ILQLKGVSKRFPGVVALDGIDLDLRSGEVHAVCGENGAGKSTLMKIISGQYHADDGVICY 81 Query: 66 NGAPVQFNRPSEALAAGIAMITQELEPIPYMTVAENIWLGREPRRAGCIVDNKALNRRTR 125 G PVQF S+A AAGIA+I QEL +P+++VAENI+L REP+R G VD + LN + Sbjct: 82 EGKPVQFASTSDAQAAGIAIIHQELNLVPHLSVAENIYLAREPKR-GPFVDYRTLNANAQ 140 Query: 126 ELLDSLEFDVDATSPMHRLSVAQIQLVEIAKAFSHDCQVMIMDEPTSAIGEHEAQTLFKA 185 L + +V T+ + LS+AQ Q+VEIAKA S D +V+IMDEPTS++ E E LF+ Sbjct: 141 RCLQRIGLNVSPTTLVGALSIAQQQMVEIAKALSLDARVLIMDEPTSSLTESETVQLFRI 200 Query: 186 IRRLTAQGAGIVYVSHRLSELAQIADDYSIFRDGAFVESGRMADIDRDHLVRGIVGQELT 245 IR L A G I+Y+SHRL E+A+I D ++ RDG + + A + +V +VG+ L Sbjct: 201 IRELRADGVAILYISHRLDEMAEIVDRVTVLRDGRHIATSDFASTTINEIVARMVGRALD 260 Query: 246 RIDHKVGRECAAN--TCLQVDNLSRAGEFHDISLQLRQGEILGIYGLMGSGRSEFLNCIY 303 D RE ++V +L R F +S LR+GEILG GLMG+GR+E I+ Sbjct: 261 --DAYPPRESVPTEQVLMRVRDLQRTDTFGPLSFDLRKGEILGFAGLMGAGRTEVARAIF 318 Query: 304 GLTVADSGSVTLQGKPMPIGLPKATINAGMSLVTEDRKDSGLVLTGSILSNIALSAYKRL 363 G DSGS+ L P+ I P+ I G++ ++EDRK GL L+ + +NI LS + + Sbjct: 319 GAERLDSGSIQLGDTPVTIRSPREAIRHGIAYLSEDRKKDGLALSMPVAANITLSNVRAI 378 Query: 364 SSWSLINARKETQLAEDMVKRLQIKTTSLELPVASMSGGNQQKVVLAKCLSTEPVCLLCD 423 SS + +ET +AE V+ L I+T +++ ++SGGNQQK+V++K L L D Sbjct: 379 SSRGFLRFSEETAIAERYVRELAIRTPTVKQIARNLSGGNQQKIVISKWLYRGSRILFFD 438 Query: 424 EPTRGIDEGAKQEIYHLLDQFVRGGGAAIVVSSEAPELLHLSDRIAVFKGGRLVTISTDT 483 EPTRGID GAK IY L+D+ G +++SSE PELL ++DRIAVF G + + Sbjct: 439 EPTRGIDVGAKYAIYKLMDRLAADGVGVVLISSELPELLGMTDRIAVFHEGLITAVLETR 498 Query: 484 ALSQEALLRLAS 495 SQE +L AS Sbjct: 499 QTSQEEILHYAS 510 Lambda K H 0.319 0.135 0.381 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 584 Number of extensions: 17 Number of successful extensions: 7 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 495 Length of database: 515 Length adjustment: 34 Effective length of query: 461 Effective length of database: 481 Effective search space: 221741 Effective search space used: 221741 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.4 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.8 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory