Align Ribose import ATP-binding protein RbsA 1; EC 7.5.2.7 (characterized, see rationale)
to candidate H281DRAFT_02712 H281DRAFT_02712 monosaccharide ABC transporter ATP-binding protein, CUT2 family
Query= uniprot:Q9WXX0 (520 letters) >FitnessBrowser__Burk376:H281DRAFT_02712 Length = 505 Score = 402 bits (1033), Expect = e-116 Identities = 224/504 (44%), Positives = 322/504 (63%), Gaps = 17/504 (3%) Query: 15 LKAKGIVKRFPGVVAVDNVDFEVYENEIVSLIGENGAGKSTLIKILTGVLKPD-AGEILV 73 L+ + I + FPGV A+D V+ E+ E+++L GENGAGKSTL+KILTG+ PD G ILV Sbjct: 10 LEMRNISRTFPGVKALDRVNLEIRAGEVLALAGENGAGKSTLMKILTGIYAPDPGGTILV 69 Query: 74 NGERVEFHSPVDAFKKGISVIHQELNLCDNMTVAENIFLAYEAVRGQKRTLSSRVDENYM 133 G+ V A G+++I+QEL + N+TV ENIFLA E RT +D M Sbjct: 70 EGQEVALADSHHARTLGVNIIYQELAVVGNLTVGENIFLAREP-----RTRLGLIDRPRM 124 Query: 134 YTRSKELLDLIGAKFSPDALVRNLTTAQRQMVEICKALVKEPRIIFMDEPTSSLTVEETE 193 Y ++E+L I P V L+ Q+QM+EI KAL + I MDEPT+SL+ ET Sbjct: 125 YREAREVLATIDMDIDPATRVSELSVGQQQMIEIAKALCARSKAIIMDEPTASLSHHETS 184 Query: 194 RLFEIIEMLKSRGISVVFVSHRLDEVMRISDRIVVMRDGKRIGELKKGEFDVDTIIKMMV 253 L I++ L+ R I+VV++SHRL+E+ ++DR+ V+RDG+ +G + +T++++MV Sbjct: 185 VLLGIVKRLRERNIAVVYISHRLEEIFELADRVTVLRDGRTVGTAPIADMTRETLVRLMV 244 Query: 254 GREV-EFFPHGIETRPGEIALEVRNLKWKD------KVKNVSFEVRKGEVLGFAGLVGAG 306 RE+ E + + LEVR L K +++++SF + +GEVLG AGLVG+G Sbjct: 245 ARELSELYGEPQSHASRDPVLEVRALSLKPVRKAEPRIRDISFTLHRGEVLGIAGLVGSG 304 Query: 307 RTETMLLVFGVNQKESGDIYVNGRKVEIKNPEDAIKMGIGLIPEDRKLQGLVLRMTVKDN 366 RTE M ++FG+ +G + + G+ V I+NP DAI+ GIG + EDRK QGL+L MTV++N Sbjct: 305 RTEIMEMIFGMRAC-TGSVKIEGKPVSIRNPHDAIRSGIGFVTEDRKAQGLILGMTVREN 363 Query: 367 IVLPSLKKISRWGLVLDERKEEEISEDYVKRLSIKTPSIYQITENLSGGNQQKVVLAKWL 426 L L++ S + V R E E +V+ L IKTP + Q NLSGGNQQK+V+AKW+ Sbjct: 364 FSLTHLERYSPFQFVQHAR-ERESCRRFVRMLGIKTPGVEQKVVNLSGGNQQKIVIAKWV 422 Query: 427 ATNADILIFDEPTRGIDVGAKAEIHRMIRELAAQGKAVIMISSELPEILNLSDRIVVMWE 486 A + +LI DEPTRGIDVGAKAE+H +I LAA+G VI+ISS+L E+L +SDRI+ + E Sbjct: 423 ARSPKVLIVDEPTRGIDVGAKAEVHALIARLAAEGIGVIVISSDLLEVLAVSDRILTVRE 482 Query: 487 GEITAVLDNREKRVTQEEIMYYAS 510 G I+ L + +QE++M A+ Sbjct: 483 GRISGELSRAQ--ASQEKVMALAT 504 Lambda K H 0.319 0.138 0.381 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 659 Number of extensions: 31 Number of successful extensions: 9 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 520 Length of database: 505 Length adjustment: 35 Effective length of query: 485 Effective length of database: 470 Effective search space: 227950 Effective search space used: 227950 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.4 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.7 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory