Align Arabinose-proton symporter; Arabinose transporter (characterized)
to candidate CCNA_00857 CCNA_00857 glucose/fructose transport protein
Query= SwissProt::P96710 (464 letters) >FitnessBrowser__Caulo:CCNA_00857 Length = 478 Score = 270 bits (690), Expect = 8e-77 Identities = 158/458 (34%), Positives = 255/458 (55%), Gaps = 18/458 (3%) Query: 19 SMGFVILISCAAGLGGLLYGYDTAVISGAIGFLKDLYSLSPFMEGLVISSIMIGGVVGVG 78 +M FV I A +GG ++GYD+ VI+G L+ ++LS GL + +I+IG +G Sbjct: 21 NMTFVAAIVAVATIGGFMFGYDSGVINGTQEGLESAFNLSKLGTGLNVGAILIGCAIGAF 80 Query: 79 ISGFLSDRFGRRKILMTAALLFAISAIVSALSQDVSTLIIARIIGGLGIGMGSSLSVTYI 138 +G L+D +GRR +++ +ALLF ISAI + ++ II R+IGGLG+G S L YI Sbjct: 81 AAGRLADVWGRRTVMIISALLFVISAIGTGAAESSIVFIIFRLIGGLGVGAASVLCPVYI 140 Query: 139 TEAAPPAIRGSLSSLYQLFTILGISATYFINLAVQR---SGTYE-WGVHTGWRWMLAYGM 194 +E P IRG LSS+ Q+ I G++ + N A+ S T E W WRWM + Sbjct: 141 SEVTPANIRGRLSSVQQIMIITGLTGAFVANYALAHTAGSSTAEFWLGLPAWRWMFWMQI 200 Query: 195 VPSVIFFLVLLVVPESPRWLAKAGKTNEALKILTRINGETVAKEELKNIENSLKIEQMGS 254 +P+ +FFL LL +PESPR+L GK +A IL+R+ G ++++ I SL + + Sbjct: 201 IPAGVFFLCLLGIPESPRYLVAKGKDAQAEAILSRLFGAGQGAKKVEEIRASLSADHKPT 260 Query: 255 LSQLFKPGLRKALVI---GILLALFNQVIGMNAITYYGPEIFKMMGFGQNAGFVTTCIVG 311 S L P +K VI G++LA+F Q++G+N + YYG +++ +GF ++ + G Sbjct: 261 FSDLLDPTTKKLRVILWAGLVLAVFQQLVGINIVFYYGSVLWQSVGFTEDDSLKINILSG 320 Query: 312 VVEVIFTVIAVLLIDKVGRKKLMSIGSAFMAIFMILIGTSFYFELT----------SGIM 361 + ++ ++A+ LIDK+GRK L+ IGSA MA+ + ++ F T G+ Sbjct: 321 TLSILACLLAIGLIDKIGRKPLLLIGSAGMAVTLGVLTWCFSTATTVNGALTLGDQIGLT 380 Query: 362 MIVLILGFVAAFCVSVGPITWIMISEIFPNHLRARAAGIATIFLWGANWAIGQFVPMMID 421 ++ +V F +S GP+ W+M+ E+FPN +R A + W AN+AI P + Sbjct: 381 ALIAANLYVIFFNLSWGPVMWVMLGEMFPNQMRGSALAVCGFAQWIANFAISVSFPALA- 439 Query: 422 SFGLAYTFWIFAVINILCFLFVVTICPETKNKSLEEIE 459 + L T+ +A+ ++ F V + ET+ K LE ++ Sbjct: 440 AASLPMTYGFYALSAVVSFFLVQKLVHETRGKELEAMQ 477 Lambda K H 0.327 0.142 0.425 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 546 Number of extensions: 37 Number of successful extensions: 4 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 464 Length of database: 478 Length adjustment: 33 Effective length of query: 431 Effective length of database: 445 Effective search space: 191795 Effective search space used: 191795 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 15 ( 7.1 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 40 (21.7 bits) S2: 51 (24.3 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory