Align Xylose/arabinose import ATP-binding protein XylG; EC 7.5.2.13 (characterized, see rationale)
to candidate CCNA_00903 CCNA_00903 inositol transport ATP-binding protein IatA
Query= uniprot:P0DTT6 (251 letters) >FitnessBrowser__Caulo:CCNA_00903 Length = 515 Score = 141 bits (356), Expect = 2e-38 Identities = 85/239 (35%), Positives = 139/239 (58%), Gaps = 10/239 (4%) Query: 4 LLEIRDVHKSFGAVKALDGVSMEINKGEVVALLGDNGAGKSTLIKIISGYHKPDRGDLVF 63 LL++ V KSF V+ALD V + + GEV ALLG+NGAGKSTLIKI+S H D G + F Sbjct: 3 LLDVSQVSKSFPGVRALDQVDLVVGVGEVHALLGENGAGKSTLIKILSAAHAADAGTVTF 62 Query: 64 EGKKVIFNSPNDA----RSLGIETIYQDLALIPDLPIYYNIFLAREVTNKIFLNKKKMME 119 G+ + P DA + LGI TIYQ+ L P+L + N++L RE ++ ++ Sbjct: 63 AGQVL---DPRDAPLRRQQLGIATIYQEFNLFPELSVAENMYLGREPRRLGLVDWSRLRA 119 Query: 120 ESKKLLDSLQIRI-PDINMKVENLSGGQRQAVAVARAVYFSAKMILMDEPTAALSVVEAR 178 +++ LL+ L + + PD V L+ ++Q V +A+A+ +A++I+MDEPTAALS E Sbjct: 120 DAQALLNDLGLPLNPD--APVRGLTVAEQQMVEIAKAMTLNARLIIMDEPTAALSGREVD 177 Query: 179 KVLELARNLKKKGLGVLIITHNIIQGYEVADRIYVLDRGKIIFHKKKEETNVEEITEVM 237 ++ + LK + + V+ ++H + + + DR V+ G+ + + V ++ +M Sbjct: 178 RLHAIIAGLKARSVSVIYVSHRLGEVKAMCDRYTVMRDGRFVASGDVADVEVADMVRLM 236 Score = 80.5 bits (197), Expect = 6e-20 Identities = 56/211 (26%), Positives = 98/211 (46%), Gaps = 20/211 (9%) Query: 23 VSMEINKGEVVALLGDNGAGKSTLIKIISGYHKPDRGDLVFEGKKVIFNSPNDARSLGIE 82 VS GE+V L G GAG++ L ++I G G ++ + K + SP DA GI Sbjct: 278 VSFAARGGEIVGLAGLVGAGRTDLARLIFGADPIAAGRVLVDDKPLRLRSPRDAIQAGI- 336 Query: 83 TIYQDLALIPDLPIYYNIFLAREVTNKIFLNKKKMMEESKKLLDS-------------LQ 129 L+P+ FL + + L K + + +D L+ Sbjct: 337 ------MLVPEDRKQQGCFLDHSIRRNLSLPSLKALSALGQWVDERAERDLVETYRQKLR 390 Query: 130 IRIPDINMKVENLSGGQRQAVAVARAVYFSAKMILMDEPTAALSVVEARKVLELARNLKK 189 I++ D + LSGG +Q V + RA+ + K++++DEPT + + +V ++ +L Sbjct: 391 IKMADAETAIGKLSGGNQQKVLLGRAMALTPKVLIVDEPTRGIDIGAKAEVHQVLSDLAD 450 Query: 190 KGLGVLIITHNIIQGYEVADRIYVLDRGKII 220 G+ V++I+ + + V+DRI V G I+ Sbjct: 451 LGVAVVVISSELAEVMAVSDRIVVFREGVIV 481 Lambda K H 0.318 0.137 0.371 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 264 Number of extensions: 13 Number of successful extensions: 5 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 2 Number of HSP's successfully gapped: 2 Length of query: 251 Length of database: 515 Length adjustment: 29 Effective length of query: 222 Effective length of database: 486 Effective search space: 107892 Effective search space used: 107892 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.3 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.7 bits) S2: 49 (23.5 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory