Align 4-(gamma-glutamylamino)butanal dehydrogenase (EC 1.2.1.99) (characterized)
to candidate CCNA_03243 CCNA_03243 NADP+-dependent gamma-glutamyl-gamma-aminobutyraldehyde dehydrogenase
Query= BRENDA::P23883 (495 letters) >FitnessBrowser__Caulo:CCNA_03243 Length = 499 Score = 470 bits (1210), Expect = e-137 Identities = 245/487 (50%), Positives = 336/487 (68%), Gaps = 4/487 (0%) Query: 11 DKALSLAIENRLFINGEYTAAAENETFETVDPVTQAPLAKIARGKSVDIDRAMSAARGVF 70 ++ LA ++ I+G+ AA TF V P L + ++ D++RA++ AR F Sbjct: 12 ERLAKLAPPSQAVIDGDLVEAASGATFHNVSPRDGQVLNLVTACQADDVERAVAGARAAF 71 Query: 71 ERGDWSLSSPAKRKAVLNKLADLMEAHAEELALLETLDTGKPIRHSLRDDIPGAARAIRW 130 E G W P ++KAVL +LA+LME A+ELALLE+LD GKPI + DIP A RW Sbjct: 72 EDGRWRDQGPRQKKAVLFRLAELMERDADELALLESLDVGKPISDARNVDIPLAINTCRW 131 Query: 131 YAEAIDKVYGEVATTSSHELAMIVREPVGVIAAIVPWNFPLLLTCWKLGPALAAGNSVIL 190 YAEA+DKVYGEV T+ + L+ V EP+GVI AIVPWNFPL + WK+ PALA GNSV+L Sbjct: 132 YAEALDKVYGEVGTSPADRLSYAVHEPLGVIGAIVPWNFPLHMAMWKVAPALAMGNSVVL 191 Query: 191 KPSEKSPLSAIRLAGLAKEAGLPDGVLNVVTGFGHEAGQALSRHNDIDAIAFTGSTRTGK 250 KP+E+SPL+A++L LA EAGLP GVLNV+ G G AG+AL+ D+D IAFTGS G+ Sbjct: 192 KPAEQSPLTALKLGALALEAGLPPGVLNVIPGLGGVAGEALALSMDVDMIAFTGSGPVGR 251 Query: 251 QLLKDAGDSNMKRVWLEAGGKSANIVFADCPDLQQAASATAAGIFYNQGQVCIAGTRLLL 310 +L++ + SN+KRV LE GGKS IVFADCPDL+ AA A A G+FYNQG+VC A +RLL+ Sbjct: 252 RLMEYSARSNLKRVSLELGGKSPQIVFADCPDLEAAAQAAAWGVFYNQGEVCTAASRLLV 311 Query: 311 EESIADEFLALLKQQAQNWQPGHPLDPATTMGTLIDCAHADSVHSFIREGESKG-QLLLD 369 E I D FLA + + A+ + G PLDP+T G ++ ++ +I +S+G + +L Sbjct: 312 EAPIKDAFLARVIEVAKGMKVGDPLDPSTQFGAMVSERQMNTALDYIATADSQGARRVLG 371 Query: 370 GRNAGLAAA---IGPTIFVDVDPNASLSREEIFGPVLVVTRFTSEEQALQLANDSQYGLG 426 G+ A + PTIF V P+ +L+REE+FGPVL V F+SE++A++LAND+ YGL Sbjct: 372 GQRVRQEAGGFYVEPTIFDQVRPDQTLAREEVFGPVLGVMTFSSEDEAMRLANDTVYGLA 431 Query: 427 AAVWTRDLSRAHRMSRRLKAGSVFVNNYNDGDMTVPFGGYKQSGNGRDKSLHALEKFTEL 486 A +WT D+S+A R +RRLKAG V+VN ++ D+T+PFGG+KQSG GRD+SLHAL K+ +L Sbjct: 432 AGLWTADVSKALRGARRLKAGLVWVNGWDACDITMPFGGFKQSGFGRDRSLHALHKYADL 491 Query: 487 KTIWISL 493 K++ ++L Sbjct: 492 KSVSVTL 498 Lambda K H 0.317 0.133 0.389 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 603 Number of extensions: 22 Number of successful extensions: 2 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 495 Length of database: 499 Length adjustment: 34 Effective length of query: 461 Effective length of database: 465 Effective search space: 214365 Effective search space used: 214365 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.3 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.7 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory