Align L-glutamate gamma-semialdehyde dehydrogenase (EC 1.2.1.88) (characterized)
to candidate CCNA_00865 CCNA_00865 alpha-ketoglutaric semialdehyde dehydrogenase xylA
Query= BRENDA::Q9K9B2 (515 letters) >lcl|FitnessBrowser__Caulo:CCNA_00865 CCNA_00865 alpha-ketoglutaric semialdehyde dehydrogenase xylA Length = 478 Score = 255 bits (652), Expect = 2e-72 Identities = 157/474 (33%), Positives = 243/474 (51%), Gaps = 13/474 (2%) Query: 41 INGERVTTEDKIQSWNPARKDQLVGSVSKANQDLAEKAIQSADEAFQTWRNVNPEERANI 100 I GERV + +S NP+ + +V V Q + A+ +A +AF W + +PE R+++ Sbjct: 9 IGGERVAADAPAESLNPSNTNDVVAKVPMGGQAEVDAAVDAARKAFPAWADASPEVRSDL 68 Query: 101 LVKAAAIIRRRKHEFSAWLVHEAGKPWKEADADTAEAIDFLEYYARQMIELNRGKEILSR 160 L K + I R + L E GK E +T A +Y+A + + + +R Sbjct: 69 LDKVGSTIIARSADIGRLLAREEGKTLAEGIGETVRAGRIFKYFAGEALRRHGQNLESTR 128 Query: 161 PGEQNRYFYTPMGVTVTISPWNFALAIMVGTAVAPIVTGNTVVLKPASTTPVVAAKFVEV 220 PG + + + +GV I+PWNF +AI A + GNTVV+KPA TP A ++ Sbjct: 129 PGVEIQTYRQAVGVYGLITPWNFPIAIPAWKAAPALAFGNTVVIKPAGPTPATANVLADI 188 Query: 221 LEDAGLPKGVINYVPGSGAEVGDYLVDHPKTSLITFTGSKDVGVRLYERAAVVRPGQNHL 280 + + G P GV N + G G+ +GD L+ H ++FTGS+ VG ++ AAV R Sbjct: 189 MAECGAPAGVFNMLFGRGS-MGDALIKHKDVDGVSFTGSQGVGAQV-AAAAVARQA---- 242 Query: 281 KRVIVEMGGKDTVVVDRDADLDLAAESILVSAFGFSGQKCSAGSRAVIHKDVYDEVLEKT 340 RV +EMGGK+ ++V DADL+ A L +F +GQ+C+A SR ++ ++D+ + Sbjct: 243 -RVQLEMGGKNPLIVLDDADLERAVAIALDGSFFATGQRCTASSRLIVQDGIHDKFVALL 301 Query: 341 VALAKNLTVGDPTNRDNYMGPVIDEKAFEKIMSYIEIGKKE-GRLMTGGEGD--SSTGFF 397 L VGD + + +GP + E E YI+I E GR++TGG+ + G++ Sbjct: 302 AEKVAALRVGDALDPNTQIGPAVSEDQMETSYRYIDIAASEGGRVVTGGDRIKLDNPGWY 361 Query: 398 IQPTIIADLDPEAVIMQEEIFGPVVAFSKANDFDHALEIANNTEYGLTGAVITRNRAHIE 457 ++PT+IAD I EE+FGPV + + ++ ALEIAN E+GL+ + T + H Sbjct: 362 VRPTLIADTQAGMRINNEEVFGPVASTIRVKSYEEALEIANGVEFGLSAGIATTSLKHAR 421 Query: 458 QAKREFHVGNLYFNRNCTGAIVGYH-PFGGFKMSGTDSKAGGPDYLALHMQAKT 510 +R G N G V YH PFGG K S ++ G + Q KT Sbjct: 422 HFQRYARAGMTMVNLATAG--VDYHVPFGGTKSSSYGAREQGFAAVEFFTQTKT 473 Lambda K H 0.316 0.134 0.388 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 590 Number of extensions: 28 Number of successful extensions: 4 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 515 Length of database: 478 Length adjustment: 34 Effective length of query: 481 Effective length of database: 444 Effective search space: 213564 Effective search space used: 213564 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.3 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.6 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory