Align L-glutamate gamma-semialdehyde dehydrogenase (EC 1.2.1.88) (characterized)
to candidate CCNA_03243 CCNA_03243 NADP+-dependent gamma-glutamyl-gamma-aminobutyraldehyde dehydrogenase
Query= BRENDA::Q65NN2 (516 letters) >lcl|FitnessBrowser__Caulo:CCNA_03243 CCNA_03243 NADP+-dependent gamma-glutamyl-gamma-aminobutyraldehyde dehydrogenase Length = 499 Score = 242 bits (617), Expect = 3e-68 Identities = 159/460 (34%), Positives = 236/460 (51%), Gaps = 16/460 (3%) Query: 41 VIDGERYETENKIVSINPANKE-EVVGTVSKATQDHAEKAIQAAAKAFET--WRYTDPEE 97 VIDG+ E + N + ++ +V+ V+ D E+A+ A AFE WR P + Sbjct: 24 VIDGDLVEAASGATFHNVSPRDGQVLNLVTACQADDVERAVAGARAAFEDGRWRDQGPRQ 83 Query: 98 RAAVLFRAVAKVRRKKHEFSALLVKEAGKPWNEA-DADTAEAIDFMEYYARQMIELAKGK 156 + AVLFR + R E + L + GKP ++A + D AI+ +YA + ++ G+ Sbjct: 84 KKAVLFRLAELMERDADELALLESLDVGKPISDARNVDIPLAINTCRWYA-EALDKVYGE 142 Query: 157 PVNSREGERNQYVYTPTGVTVVIPPWNFLFAIMAGTTVAPIVTGNTVVLKPASAAPVIAA 216 S + V+ P GV I PWNF + + GN+VVLKPA +P+ A Sbjct: 143 VGTSPADRLSYAVHEPLGVIGAIVPWNFPLHMAMWKVAPALAMGNSVVLKPAEQSPLTAL 202 Query: 217 KFVEVLEESGLPKGVVNFVPGSGAEVGDYLVDHPKTSIITFTGSREVGTRIFERAAKVQP 276 K + E+GLP GV+N +PG G G+ L +I FTGS VG R+ E +A+ Sbjct: 203 KLGALALEAGLPPGVLNVIPGLGGVAGEALALSMDVDMIAFTGSGPVGRRLMEYSAR--- 259 Query: 277 GQTHLKQVIAEMGGKDTVVVDEDC-DIELAAQSIFTSAFGFAGQKCSAGSRAVVHEKVYD 335 ++LK+V E+GGK +V DC D+E AAQ+ F G+ C+A SR +V + D Sbjct: 260 --SNLKRVSLELGGKSPQIVFADCPDLEAAAQAAAWGVFYNQGEVCTAASRLLVEAPIKD 317 Query: 336 EVLKRVIEITESKKVGEPDSADVYMGPVIDQASFNKIMDYIEIGKEEG-RLVSGGK--GD 392 L RVIE+ + KVG+P G ++ + N +DYI +G R V GG+ Sbjct: 318 AFLARVIEVAKGMKVGDPLDPSTQFGAMVSERQMNTALDYIATADSQGARRVLGGQRVRQ 377 Query: 393 DSKGYFIEPTIFADLDPKARLMQEEIFGPVVAFSKVSSFDEALEVANNTEYGLTGAVITK 452 ++ G+++EPTIF + P L +EE+FGPV+ SS DEA+ +AN+T YGL + T Sbjct: 378 EAGGFYVEPTIFDQVRPDQTLAREEVFGPVLGVMTFSSEDEAMRLANDTVYGLAAGLWTA 437 Query: 453 NRDHINRAKQEFHVGNLYFNRNCTGAIVGYHPFGGFKMSG 492 + R + G ++ N I PFGGFK SG Sbjct: 438 DVSKALRGARRLKAGLVWVNGWDACDIT--MPFGGFKQSG 475 Lambda K H 0.315 0.133 0.382 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 563 Number of extensions: 24 Number of successful extensions: 6 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 516 Length of database: 499 Length adjustment: 34 Effective length of query: 482 Effective length of database: 465 Effective search space: 224130 Effective search space used: 224130 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.3 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.6 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory