Align Acetoacetate--CoA ligase (EC 6.2.1.16) (characterized)
to candidate CCNA_01382 CCNA_01382 long-chain-fatty-acid--CoA ligase
Query= reanno::acidovorax_3H11:Ac3H11_3009 (578 letters) >FitnessBrowser__Caulo:CCNA_01382 Length = 583 Score = 229 bits (585), Expect = 2e-64 Identities = 171/538 (31%), Positives = 255/538 (47%), Gaps = 54/538 (10%) Query: 51 VHQGRRYTYAQLQTEAHRLASALLGMGLTPGDRVGIWSHNNAEWVLMQLATAQVGLVLVN 110 VH+ R + +A+ L G+ GDRV I N EW + +G ++ Sbjct: 69 VHEDERVNFEAFYRAVTHMAAELESFGVQKGDRVAIVMRNLPEWPVAFYGALSLGAIVTP 128 Query: 111 INPAYRTAEVEYALNKVGCKL-LVSMARFKTSDYLGMLRELAPEWQGQQPGHLQAAKLPQ 169 +N + E+EY L G K+ +V + R+ E G+ HL P Sbjct: 129 LNAWWTGPELEYGLVDSGAKVAIVDVERY--------------ERMGE---HLH--NCPD 169 Query: 170 LKTVVWIDDEAGQGADEPGLLRFTELIARGN----AADPRLAQVAAGLQATDPINIQFTS 225 LK V A + P ++ I N + L VA + A D I +TS Sbjct: 170 LKRVYV--SRAKEEITHPYVIPLESKIGGANDWAKLDEKPLPTVA--ITADDDATIFYTS 225 Query: 226 GTTGFPKGATLTHRNILNNGFFI-----------GECMKL----TPADRLCIPVPLYH-- 268 GTTG PKGA THRNI +N F GE P + VP +H Sbjct: 226 GTTGKPKGAIATHRNINSNIFAAAAAGARAFLRRGEAPPQPDPSAPQKGALLSVPFFHAT 285 Query: 269 -CFGMVLGNLACFTHGATIVYPNDGFDPLTVLQTVQDERCTGLHGVPTMFIAELDHPRFA 327 CF ++ +L GA + +DP +Q +QDE+ T + GVPT+ ++HP A Sbjct: 286 GCFAVLNPSLFA---GAKLAMMRK-WDPERAMQVIQDEKLTQMGGVPTIAWQIIEHPNRA 341 Query: 328 EFNLSTLRTGIMAGSPCPTEVMKRVVEQMNLREITIAYGMTETSPVSCQSSTDTPLSKRV 387 ++LS++ G+P E+++++ E +GMTETS + +S + R Sbjct: 342 NYDLSSIEAVAYGGAPSAPELVRKIKEIWPKSSPGNGWGMTETSATATSNSAED-YENRP 400 Query: 388 STVGQVQPHLEVKIVDPDTG-AVVPIGQRGEFCTKGYSVMHGYWGDEAKTREAIDEGGWM 446 + G P ++KI+ + +PIG+ GE KG V+ GYW T + +G W+ Sbjct: 401 DSCGPAVPVTDLKIMTVEAPYRELPIGEVGELWCKGPQVVRGYWNKPEATAQTFVDG-WV 459 Query: 447 HTGDLATMDAEGYVNIVGRIKDMVIRGGENIYPREIEEFLYRHPQVQDVQVVGVPDQKYG 506 TGDLA +DAEG+ I+ R KDM+IRGGENIY E+E LY HP V D +VGVP + G Sbjct: 460 RTGDLARLDAEGFCFIIDRAKDMLIRGGENIYCIEVENCLYDHPAVMDAALVGVPHKTLG 519 Query: 507 EELCAWIIAKPGTQPTEDDIRAFCKGQIAHYKVP-RYIRFVTSFPMTVTGKIQKFKIR 563 EE A + KPG + TE ++RAF ++A +KVP + + + + P GKI K +++ Sbjct: 520 EEPAAVVTLKPGAEATEAELRAFVADRLAAFKVPVKVVFWPETLPRNANGKIMKNELK 577 Lambda K H 0.320 0.136 0.412 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 758 Number of extensions: 39 Number of successful extensions: 5 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 2 Number of HSP's successfully gapped: 2 Length of query: 578 Length of database: 583 Length adjustment: 36 Effective length of query: 542 Effective length of database: 547 Effective search space: 296474 Effective search space used: 296474 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.4 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.8 bits) S2: 53 (25.0 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory