Align Aldehyde dehydrogenase; Acetaldehyde dehydrogenase; EC 1.2.1.3 (characterized)
to candidate CCNA_03695 CCNA_03695 aldehyde dehydrogenase
Query= SwissProt::A1B4L2 (508 letters) >FitnessBrowser__Caulo:CCNA_03695 Length = 506 Score = 830 bits (2145), Expect = 0.0 Identities = 398/493 (80%), Positives = 442/493 (89%) Query: 16 PFEERYDNFIGGEWVAPVSGRYFTNTTPITGAEIGQIARSEAGDIELALDAAHAAKEKWG 75 PF+ RYDNFIGG+WVAP GRYF N++PI G +I +IARS+A DIE ALDAAHAAK W Sbjct: 14 PFKARYDNFIGGQWVAPADGRYFDNSSPIHGRKICEIARSQAIDIERALDAAHAAKAGWA 73 Query: 76 ATSPAERANIMLKIADRMERNLELLATAETWDNGKPIRETMAADLPLAIDHFRYFAGVLR 135 TS A+R+ I+L+IADRME NL LATAETWDNGKPIRET+AAD+PLAIDHFRYFAG LR Sbjct: 74 RTSAADRSRILLRIADRMEENLAALATAETWDNGKPIRETLAADIPLAIDHFRYFAGCLR 133 Query: 136 AQEGSISQIDDDTVAYHFHEPLGVVGQIIPWNFPLLMACWKLAPAIAAGNCVVLKPAEQT 195 +QEGSIS+ID DT+AYHFHEPLGVVGQIIPWNFPLLMACWKLAPA+AAGNCVVLKPAEQT Sbjct: 134 SQEGSISEIDHDTIAYHFHEPLGVVGQIIPWNFPLLMACWKLAPALAAGNCVVLKPAEQT 193 Query: 196 PAGIMVWANLIGDLLPPGVLNIVNGFGLEAGKPLASSNRIAKIAFTGETTTGRLIMQYAS 255 PA IMVWA +IGDLLP GVLNIVNGFGLEAGKPLASS RIAKIAFTGET+TGRLIMQYA+ Sbjct: 194 PASIMVWAEMIGDLLPAGVLNIVNGFGLEAGKPLASSPRIAKIAFTGETSTGRLIMQYAA 253 Query: 256 ENLIPVTLELGGKSPNIFFADVAREDDDFFDKALEGFTMFALNQGEVCTCPSRVLIQESI 315 +NLIPVTLELGGKSPNIFF DVAREDDD+ DKALEGFTMFALNQGEVCTCPSR L+QESI Sbjct: 254 QNLIPVTLELGGKSPNIFFDDVAREDDDYLDKALEGFTMFALNQGEVCTCPSRALVQESI 313 Query: 316 YDKFMERAVQRVQAIKQGDPRESDTMIGAQASSEQKEKILSYLDIGKKEGAEVLTGGKAA 375 Y+KFMERA++RV A+ QG P + TMIGAQAS EQ KIL Y+DIG+ EGA++L GG+ Sbjct: 314 YEKFMERALKRVNAVVQGSPLDPATMIGAQASEEQLNKILGYMDIGRNEGAKLLAGGQRK 373 Query: 376 DLGGELSGGYYIEPTIFRGNNKMRIFQEEIFGPVVSVTTFKDQAEALEIANDTLYGLGAG 435 L G+L+ GYY+EPT+F G+NKMRIFQEEIFGPV++VTTFK + EALEIANDT +GLGAG Sbjct: 374 ILPGQLADGYYVEPTVFEGHNKMRIFQEEIFGPVLAVTTFKTEEEALEIANDTAFGLGAG 433 Query: 436 VWSRDANTCYRMGRGIKAGRVWTNCYHAYPAHAAFGGYKQSGIGRETHKMMLDHYQQTKN 495 VWSRDAN CYR GRGI+AGRVWTNCYHAYPAHAAFGGYKQSG+GRETHKMMLDHYQQTKN Sbjct: 434 VWSRDANRCYRFGRGIEAGRVWTNCYHAYPAHAAFGGYKQSGVGRETHKMMLDHYQQTKN 493 Query: 496 MLVSYSPKKLGFF 508 MLVSYSPK LGFF Sbjct: 494 MLVSYSPKALGFF 506 Lambda K H 0.319 0.136 0.411 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 897 Number of extensions: 27 Number of successful extensions: 1 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 508 Length of database: 506 Length adjustment: 34 Effective length of query: 474 Effective length of database: 472 Effective search space: 223728 Effective search space used: 223728 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.4 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.7 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory