Align Ribose import ATP-binding protein RbsA; EC 7.5.2.7 (characterized, see rationale)
to candidate CCNA_00903 CCNA_00903 inositol transport ATP-binding protein IatA
Query= uniprot:D8J111 (520 letters) >FitnessBrowser__Caulo:CCNA_00903 Length = 515 Score = 383 bits (984), Expect = e-111 Identities = 215/511 (42%), Positives = 326/511 (63%), Gaps = 18/511 (3%) Query: 22 VIALRNVCKRFPGVLALDNCQFELAAGEVHALMGENGAGKSTLMKILSGVYQRDSGDILL 81 ++ + V K FPGV ALD + GEVHAL+GENGAGKSTL+KILS + D+G + Sbjct: 3 LLDVSQVSKSFPGVRALDQVDLVVGVGEVHALLGENGAGKSTLIKILSAAHAADAGTVTF 62 Query: 82 DGKPVEITE-PRQAQALGIGIIHQELNLMNHLSAAQNIFIGREPRKAMGLFIDEDELNRQ 140 G+ ++ + P + Q LGI I+QE NL LS A+N+++GREPR+ +GL +D L Sbjct: 63 AGQVLDPRDAPLRRQQLGIATIYQEFNLFPELSVAENMYLGREPRR-LGL-VDWSRLRAD 120 Query: 141 AAAIFARMRLDMDPSTPVGELTVARQQMVEIAKALSFDSRVLIMDEPTAALNNAEIAELF 200 A A+ + L ++P PV LTVA QQMVEIAKA++ ++R++IMDEPTAAL+ E+ L Sbjct: 121 AQALLNDLGLPLNPDAPVRGLTVAEQQMVEIAKAMTLNARLIIMDEPTAALSGREVDRLH 180 Query: 201 RIIRDLQAQGVGIVYISHKMDELRQIADRVSVMRDGKYIATVPMQETSMDTIISMMVGRA 260 II L+A+ V ++Y+SH++ E++ + DR +VMRDG+++A+ + + + ++ +MVGR Sbjct: 181 AIIAGLKARSVSVIYVSHRLGEVKAMCDRYTVMRDGRFVASGDVADVEVADMVRLMVGRH 240 Query: 261 LDGE---QRIPPDTSRNDVVLEVRG-------LNRGRAIRDVSFTLRKGEILGFAGLMGA 310 ++ E +R PP VVL+V G L+ +R VSF R GEI+G AGL+GA Sbjct: 241 VEFERRKRRRPPGA----VVLKVEGVTPAAPRLSAPGYLRQVSFAARGGEIVGLAGLVGA 296 Query: 311 GRTEVARAIFGADPLEAGEIIIHGGKAVIKSPADAVAHGIGYLSEDRKHFGLAVGMDVQA 370 GRT++AR IFGADP+ AG +++ ++SP DA+ GI + EDRK G + ++ Sbjct: 297 GRTDLARLIFGADPIAAGRVLVDDKPLRLRSPRDAIQAGIMLVPEDRKQQGCFLDHSIRR 356 Query: 371 NIALSSMGRFTRVG-FMDQRAIREAAQMYVRQLAIKTPSVEQQARLLSGGNQQKIVIAKW 429 N++L S+ + +G ++D+RA R+ + Y ++L IK E LSGGNQQK+++ + Sbjct: 357 NLSLPSLKALSALGQWVDERAERDLVETYRQKLRIKMADAETAIGKLSGGNQQKVLLGRA 416 Query: 430 LLRDCDILFFDEPTRGIDVGAKSEIYKLLDALAEQGKAIVMISSELPEVLRMSHRVLVMC 489 + +L DEPTRGID+GAK+E++++L LA+ G A+V+ISSEL EV+ +S R++V Sbjct: 417 MALTPKVLIVDEPTRGIDIGAKAEVHQVLSDLADLGVAVVVISSELAEVMAVSDRIVVFR 476 Query: 490 EGRITGELARADATQEKIMQLATQRESAVAS 520 EG I +L AT+E +M VA+ Sbjct: 477 EGVIVADLDAQTATEEGLMAYMATGTDRVAA 507 Lambda K H 0.320 0.135 0.372 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 675 Number of extensions: 39 Number of successful extensions: 9 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 520 Length of database: 515 Length adjustment: 35 Effective length of query: 485 Effective length of database: 480 Effective search space: 232800 Effective search space used: 232800 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.4 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.8 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory