Align Short-chain dehydrogenase (characterized, see rationale)
to candidate CCNA_01892 CCNA_01892 short chain dehydrogenase
Query= uniprot:A0A2E7P8M8 (258 letters) >FitnessBrowser__Caulo:CCNA_01892 Length = 546 Score = 115 bits (287), Expect = 3e-30 Identities = 91/256 (35%), Positives = 124/256 (48%), Gaps = 12/256 (4%) Query: 1 MDLNLQDKVVIVTGGASGIGGAISLQLAAEGAIPVVFARSEPDPQFWARLTGLQPRAALF 60 M Q +VV+VTGGA GIG A + A G +V R+ + R L P Sbjct: 26 MTSKAQSRVVLVTGGADGIGWAACQRFARAGDQVLVADRNVERAR--ERADSLGPDHHAI 83 Query: 61 QLELQDEARCGEAVAETVRRFGRLDGLVNNAGVND---SVGLDAGRNEFVASLERNLIHY 117 +++ EA+ E + R FGRLD LVNNAGV D + LD E N+ Sbjct: 84 AMDVSSEAQIREGFEQLHREFGRLDVLVNNAGVTDPQPTATLDQTAEEVARLQAINVTGA 143 Query: 118 YVMAHYCVP-HLKATRGAILNVSSKTALTGQGNTSGYCASKGAQLSLTREWAAALRDDGV 176 ++ A ++ GAI+N++S L + Y ASK A +SLTR A GV Sbjct: 144 FLAAREAGRLMIEQGHGAIINLASGAGLVALAKRTSYSASKAAVISLTRTLACEWAAKGV 203 Query: 177 RVNALIPAEVMTPLYEKWI-ATFENPQEKLDAITSKIPLGKRFTTSEEMADMAVFLLSGR 235 RVNA++P T + + I A +P + S+IPLG R EEMA+ A FL S Sbjct: 204 RVNAVLPGYTRTQMVQDQIDAGLLDP----SIVLSRIPLG-RMGEPEEMAEGAFFLASDA 258 Query: 236 SSHTTGQWVFVDGGYT 251 +S+ G + VDGGYT Sbjct: 259 ASYVVGATLVVDGGYT 274 Score = 86.7 bits (213), Expect = 1e-21 Identities = 71/246 (28%), Positives = 106/246 (43%), Gaps = 9/246 (3%) Query: 8 KVVIVTGGASGIGGAISLQLAAEGAIPVVFARSEPDPQFWARLTGLQPRAALFQLELQDE 67 +V +TGG GIG + A G +V R + A G + Q ++ D Sbjct: 296 RVSAITGGGRGIGRCVVDLFHAAGDRLLVIERDAEGAKALAEALG--DEHIVVQADITDV 353 Query: 68 ARCGEAVAETVRRFGRLDGLVNNAGVND--SVGLDAGRNEFVASLERNLIHYYVMAHYCV 125 A A A+ R+GRLD L+NNAG D L+ +F + + N A Sbjct: 354 AAVEAAFAQAQARWGRLDVLINNAGAADVFKPSLEQTAQDFTSVYDLNFSGPLATAK-AA 412 Query: 126 PHLKATRGAILNVSSKTALTGQGNTSGYCASKGAQLSLTREWAAALRDDGVRVNALIPAE 185 L + G I+N+ S L + YCA+K A ++R A G+RVN + P Sbjct: 413 ARLMSQGGVIVNLGSIAGLGALPQRNAYCAAKAAVTMMSRSLACEWASAGIRVNTVAPGY 472 Query: 186 VMTPLYEKWIATFENPQEKLDAITSKIPLGKRFTTSEEMADMAVFLLSGRSSHTTGQWVF 245 + TP +A + + D I + P+G R E+A FL S +S+ G + Sbjct: 473 IETPAV---LALKSAGRAQFDKIRRRAPIG-RLGDPMEVARTIAFLASPAASYVAGATLT 528 Query: 246 VDGGYT 251 VDGG+T Sbjct: 529 VDGGWT 534 Lambda K H 0.318 0.134 0.394 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 318 Number of extensions: 15 Number of successful extensions: 6 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 2 Number of HSP's successfully gapped: 2 Length of query: 258 Length of database: 546 Length adjustment: 30 Effective length of query: 228 Effective length of database: 516 Effective search space: 117648 Effective search space used: 117648 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.4 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.7 bits) S2: 50 (23.9 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory