Align GguA aka ATU2347 aka AGR_C_4264, component of Multiple sugar (arabinose, xylose, galactose, glucose, fucose) putative porter (characterized)
to candidate CCNA_00903 CCNA_00903 inositol transport ATP-binding protein IatA
Query= TCDB::O05176 (512 letters) >FitnessBrowser__Caulo:CCNA_00903 Length = 515 Score = 336 bits (861), Expect = 1e-96 Identities = 198/507 (39%), Positives = 310/507 (61%), Gaps = 9/507 (1%) Query: 4 TILEMRNITKTFPGVKALENVNLKVKEGEIHALVGENGAGKSTLMKVLSGVYPAGTYEGE 63 T+L++ ++K+FPGV+AL+ V+L V GE+HAL+GENGAGKSTL+K+LS + A G Sbjct: 2 TLLDVSQVSKSFPGVRALDQVDLVVGVGEVHALLGENGAGKSTLIKILSAAHAADA--GT 59 Query: 64 IHYEGAVRNFR-AINDSEDIGIIIIHQELALVPLLSIAENIFLGNEVASNGVISWQQTFN 122 + + G V + R A + +GI I+QE L P LS+AEN++LG E G++ W + Sbjct: 60 VTFAGQVLDPRDAPLRRQQLGIATIYQEFNLFPELSVAENMYLGREPRRLGLVDWSRLRA 119 Query: 123 RTRELLKKVGLKESPETLITDIGVGKQQLVEIAKALSKSVKLLILDEPTASLNESDSEAL 182 + LL +GL +P+ + + V +QQ+VEIAKA++ + +L+I+DEPTA+L+ + + L Sbjct: 120 DAQALLNDLGLPLNPDAPVRGLTVAEQQMVEIAKAMTLNARLIIMDEPTAALSGREVDRL 179 Query: 183 LNLLMEFRNQGMTSIIITHKLNEVRKVADQITVLRDGMTVKTLDCHQEEISEDVIIRNMV 242 ++ + + ++ I ++H+L EV+ + D+ TV+RDG V + D E+++ ++R MV Sbjct: 180 HAIIAGLKARSVSVIYVSHRLGEVKAMCDRYTVMRDGRFVASGDVADVEVAD--MVRLMV 237 Query: 243 GRDLEDRYPPRDVPIGETILEVKNWNAYHQQHRDRQVLHDINVTVRKGEVVGIAGLMGAG 302 GR +E R P G +L+V+ + L ++ R GE+VG+AGL+GAG Sbjct: 238 GRHVEFERRKRRRPPGAVVLKVEGVTPAAPRLSAPGYLRQVSFAARGGEIVGLAGLVGAG 297 Query: 303 RTEFAMSVFGKSYGHRITGDVLIDGKPVDVSTVRKAIDAGLAYVTEDRKHLGLVLNDNIL 362 RT+ A +FG G VL+D KP+ + + R AI AG+ V EDRK G L+ +I Sbjct: 298 RTDLARLIFGAD--PIAAGRVLVDDKPLRLRSPRDAIQAGIMLVPEDRKQQGCFLDHSIR 355 Query: 363 HNTTLANLAGVSK-ASIIDDIKEMKVASDFRTRLRIRSSGIFQETVNLSGGNQQKVVLSK 421 N +L +L +S +D+ E + +R +LRI+ + LSGGNQQKV+L + Sbjct: 356 RNLSLPSLKALSALGQWVDERAERDLVETYRQKLRIKMADAETAIGKLSGGNQQKVLLGR 415 Query: 422 WLFSNPDVLILDEPTRGIDVGAKYEIYTIINQLAADGKGVLMISSEMPELLGNCDRIYVM 481 + P VLI+DEPTRGID+GAK E++ +++ LA G V++ISSE+ E++ DRI V Sbjct: 416 AMALTPKVLIVDEPTRGIDIGAKAEVHQVLSDLADLGVAVVVISSELAEVMAVSDRIVVF 475 Query: 482 NEGRIVAELPKGEASQESIMRAIMRSG 508 EG IVA+L A++E +M A M +G Sbjct: 476 REGVIVADLDAQTATEEGLM-AYMATG 501 Lambda K H 0.316 0.135 0.374 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 609 Number of extensions: 29 Number of successful extensions: 9 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 512 Length of database: 515 Length adjustment: 35 Effective length of query: 477 Effective length of database: 480 Effective search space: 228960 Effective search space used: 228960 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.3 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.6 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory