Align Alpha-ketoglutaric semialdehyde dehydrogenase; alphaKGSA dehydrogenase; 2,5-dioxovalerate dehydrogenase; EC 1.2.1.26 (characterized)
to candidate CCNA_03243 CCNA_03243 NADP+-dependent gamma-glutamyl-gamma-aminobutyraldehyde dehydrogenase
Query= SwissProt::P42236 (488 letters) >FitnessBrowser__Caulo:CCNA_03243 Length = 499 Score = 296 bits (759), Expect = 8e-85 Identities = 172/478 (35%), Positives = 280/478 (58%), Gaps = 11/478 (2%) Query: 14 INGEWVKSQSGDMVKVENPADVNDIVGYVQNSTAEDVERAVTAANEA--KTAWRKLTGAE 71 I+G+ V++ SG +P D ++ V A+DVERAV A A WR + Sbjct: 25 IDGDLVEAASGATFHNVSPRD-GQVLNLVTACQADDVERAVAGARAAFEDGRWRDQGPRQ 83 Query: 72 RGQYLYKTADIMEQRLEEIAACATREMGKTLPEAKG-ETARGIAILRYYAGEGMRKTGDV 130 + L++ A++ME+ +E+A + ++GK + +A+ + I R+YA E + K Sbjct: 84 KKAVLFRLAELMERDADELALLESLDVGKPISDARNVDIPLAINTCRWYA-EALDKVYGE 142 Query: 131 IPSTDKDALMFTTRVPLGVVGVISPWNFPVAIPIWKMAPALVYGNTVVIKPATETAVTCA 190 + ++ D L + PLGV+G I PWNFP+ + +WK+APAL GN+VV+KPA ++ +T Sbjct: 143 VGTSPADRLSYAVHEPLGVIGAIVPWNFPLHMAMWKVAPALAMGNSVVLKPAEQSPLTAL 202 Query: 191 KIIACFEEAGLPAGVINLVTGPGSVVGQGLAEHDGVNAVTFTGSNQVG-KIIGQAALARG 249 K+ A EAGLP GV+N++ G G V G+ LA V+ + FTGS VG +++ +A + Sbjct: 203 KLGALALEAGLPPGVLNVIPGLGGVAGEALALSMDVDMIAFTGSGPVGRRLMEYSARSNL 262 Query: 250 AKYQLEMGGKNPVIV-ADDADLEAAAEAVITGAFRSTGQKCTATSRVIVQSGIYERFKEK 308 + LE+GGK+P IV AD DLEAAA+A G F + G+ CTA SR++V++ I + F + Sbjct: 263 KRVSLELGGKSPQIVFADCPDLEAAAQAAAWGVFYNQGEVCTAASRLLVEAPIKDAFLAR 322 Query: 309 LLQRTKDITIGDSLKEDVWMGPIASKNQLDNCLSYIEKGKQEGASLLIGGEKLENGKYQN 368 +++ K + +GD L G + S+ Q++ L YI +GA ++GG+++ + Sbjct: 323 VIEVAKGMKVGDPLDPSTQFGAMVSERQMNTALDYIATADSQGARRVLGGQRVR--QEAG 380 Query: 369 GYYVQPAIFDNVTSEMTIAQEEIFGPVIALIKVDSIEEALNIANDVKFGLSASIFTENIG 428 G+YV+P IFD V + T+A+EE+FGPV+ ++ S +EA+ +AND +GL+A ++T ++ Sbjct: 381 GFYVEPTIFDQVRPDQTLAREEVFGPVLGVMTFSSEDEAMRLANDTVYGLAAGLWTADVS 440 Query: 429 RMLSFIDEIDAGLVRINAESAGVELQAPFGGMKQSSSHSREQGEAAKDFFTAIKTVFV 486 + L + AGLV +N A ++ PFGG KQ S R++ A + +K+V V Sbjct: 441 KALRGARRLKAGLVWVNGWDA-CDITMPFGGFKQ-SGFGRDRSLHALHKYADLKSVSV 496 Lambda K H 0.315 0.132 0.374 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 488 Number of extensions: 17 Number of successful extensions: 7 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 488 Length of database: 499 Length adjustment: 34 Effective length of query: 454 Effective length of database: 465 Effective search space: 211110 Effective search space used: 211110 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.3 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.5 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory