Align NAD-dependent glycerol dehydrogenase; Dha-forming NAD-dependent glycerol dehydrogenase; EC 1.1.1.6 (characterized)
to candidate CCNA_01892 CCNA_01892 short chain dehydrogenase
Query= SwissProt::Q92EU6 (254 letters) >lcl|FitnessBrowser__Caulo:CCNA_01892 CCNA_01892 short chain dehydrogenase Length = 546 Score = 150 bits (378), Expect = 7e-41 Identities = 90/244 (36%), Positives = 142/244 (58%), Gaps = 6/244 (2%) Query: 15 KVAVVTGAASGIGKAMAELFSEKGAYVVLLDIK-EDVKDVAAQINPSRTLALQVDITKKE 73 +V +VTG A GIG A + F+ G V++ D E ++ A + P A+ +D++ + Sbjct: 33 RVVLVTGGADGIGWAACQRFARAGDQVLVADRNVERARERADSLGPDHH-AIAMDVSSEA 91 Query: 74 NIEKVVAEIKKVYPKIDILANSAGVALLEKAEDLPE--EYWDKTMELNLKGSFLMAQIIG 131 I + ++ + + ++D+L N+AGV + L + E + +N+ G+FL A+ G Sbjct: 92 QIREGFEQLHREFGRLDVLVNNAGVTDPQPTATLDQTAEEVARLQAINVTGAFLAAREAG 151 Query: 132 REMIATGGGKIVNMASQASVIALDKHVAYCASKAAIVSMTQVLAMEWAPYNINVNAISPT 191 R MI G G I+N+AS A ++AL K +Y ASKAA++S+T+ LA EWA + VNA+ P Sbjct: 152 RLMIEQGHGAIINLASGAGLVALAKRTSYSASKAAVISLTRTLACEWAAKGVRVNAVLPG 211 Query: 192 VILTELGK-KAWAGQVGED-MKKLIPAGRFGYPEEVAACALFLVSDAASLITGENLIIDG 249 T++ + + AG + + IP GR G PEE+A A FL SDAAS + G L++DG Sbjct: 212 YTRTQMVQDQIDAGLLDPSIVLSRIPLGRMGEPEEMAEGAFFLASDAASYVVGATLVVDG 271 Query: 250 GYTI 253 GYT+ Sbjct: 272 GYTV 275 Score = 126 bits (317), Expect = 8e-34 Identities = 82/246 (33%), Positives = 127/246 (51%), Gaps = 15/246 (6%) Query: 15 KVAVVTGAASGIGKAMAELFSEKGAYVVLLDIKEDVKDVAAQINPSRTLALQVDITKKEN 74 +V+ +TG GIG+ + +LF G +++++ + A+ + +Q DIT Sbjct: 296 RVSAITGGGRGIGRCVVDLFHAAGDRLLVIERDAEGAKALAEALGDEHIVVQADITDVAA 355 Query: 75 IEKVVAEIKKVYPKIDILANSAGVA------LLEKAEDLPEEYWDKTMELNLKGSFLMAQ 128 +E A+ + + ++D+L N+AG A L + A+D Y +LN G A+ Sbjct: 356 VEAAFAQAQARWGRLDVLINNAGAADVFKPSLEQTAQDFTSVY-----DLNFSGPLATAK 410 Query: 129 IIGREMIATGGGKIVNMASQASVIALDKHVAYCASKAAIVSMTQVLAMEWAPYNINVNAI 188 R M + GG IVN+ S A + AL + AYCA+KAA+ M++ LA EWA I VN + Sbjct: 411 AAARLM--SQGGVIVNLGSIAGLGALPQRNAYCAAKAAVTMMSRSLACEWASAGIRVNTV 468 Query: 189 SPTVILTE--LGKKAWAGQVGEDMKKLIPAGRFGYPEEVAACALFLVSDAASLITGENLI 246 +P I T L K+ + +++ P GR G P EVA FL S AAS + G L Sbjct: 469 APGYIETPAVLALKSAGRAQFDKIRRRAPIGRLGDPMEVARTIAFLASPAASYVAGATLT 528 Query: 247 IDGGYT 252 +DGG+T Sbjct: 529 VDGGWT 534 Lambda K H 0.316 0.133 0.369 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 311 Number of extensions: 19 Number of successful extensions: 7 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 2 Number of HSP's successfully gapped: 2 Length of query: 254 Length of database: 546 Length adjustment: 30 Effective length of query: 224 Effective length of database: 516 Effective search space: 115584 Effective search space used: 115584 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.3 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.6 bits) S2: 49 (23.5 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the preprint on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory