Align Phosphomannomutase/phosphoglucomutase; PMM / PGM; EC 5.4.2.2; EC 5.4.2.8 (uncharacterized)
to candidate CCNA_02347 CCNA_02347 phosphomannomutase/phosphoglucomutase
Query= curated2:Q88C93 (463 letters) >lcl|FitnessBrowser__Caulo:CCNA_02347 CCNA_02347 phosphomannomutase/phosphoglucomutase Length = 498 Score = 221 bits (564), Expect = 3e-62 Identities = 148/472 (31%), Positives = 235/472 (49%), Gaps = 37/472 (7%) Query: 14 FRAYDIRGVVGKTLHAETAYWIGRAIGAQSLAQGEPQVSVGRDGRLSGPMLVEQLIKGLV 73 FR YD R + G ++ +G +G G+ ++ VG D R + LI GL+ Sbjct: 27 FREYDARWLFGPEINLLGVQALGLGLGTYIHELGQSKIVVGHDFRSYSTSIKNALILGLI 86 Query: 74 DAGCNVSDVGLVPTPALYYAANVLAGKSGVMLTGSHNPSDYNGFK------IVIAGDTLA 127 AGC V D+GL +P Y+A L M+T SHN + + G K + D ++ Sbjct: 87 SAGCEVHDIGLALSPTAYFAQFDLDIPCVAMVTASHNENGWTGVKMGAQKPLTFGPDEMS 146 Query: 128 NEQIQALLTRLKTND---LTLAQGRVEKVEILDRYFKQIVGDVKLAKKLKVVVDCGNGAA 184 + L D L QG + RY + + + LKV+ CGNG A Sbjct: 147 RLKAIVLNAEFVERDGGKLIRVQGEAQ------RYIDDVAKRASVTRPLKVIAACGNGTA 200 Query: 185 GVVAPQLIEALG-CEVIPLFCEVDGNFPNHHPDPGKPENLEDLIAKVKETGADIGLAFDG 243 G + ++ +G EV+P+ ++D FP ++P+P E L + V+ETGAD+ FDG Sbjct: 201 GAFVVEALQKMGVAEVVPMDTDLDFTFPKYNPNPEDAEMLHAMADAVRETGADLAFGFDG 260 Query: 244 DGDRVGVVTNTGSIVYPDRLLMLFAQDVLSRNPGAEIIFDVKCT--RRLTPLIEQHGGRA 301 DGDR GVV + G ++ D++ ++ A+D+ +PGA + DVK T P++ QHG + Sbjct: 261 DGDRCGVVDDEGEEIFADKIGLMLARDLAPLHPGATFVVDVKSTGLYATDPILAQHGCKV 320 Query: 302 LMWKTGHSLIKKKMKQTGSLLAGEMSGHIFIK-ERWYGFDDGIYSAARLLEILSKTE-QS 359 + WKTGHS IK+K + G+L E SGH F+ E YG+D G+ +AA +L +L + Sbjct: 321 IYWKTGHSYIKRKSAELGALAGFEKSGHFFMNGELGYGYDCGLTAAAAILAMLDRNPGVK 380 Query: 360 AENLFAAFPNDISTPEINIDVTDEGKFSII-DALQRDADWGEA----------NLTTIDG 408 ++ A P ++ ++ DE K+ ++ D ++ D A + T++G Sbjct: 381 LSDMRKALPVAFTSLTMSPHCGDEVKYGVVADVVKEYEDLFAAGGSILGRKITEVITVNG 440 Query: 409 VRVDYANG-WGLVRASNTTPVLVLRFEADSDAELQRIKDVFRTQLLRVEPEL 459 VRV +G W LVRAS+ P +V+ E+ + R +FR + V+P L Sbjct: 441 VRVHLEDGSWVLVRASSNKPEVVVVVESTQSEDDMRA--LFRQE---VKPRL 487 Lambda K H 0.319 0.138 0.406 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 556 Number of extensions: 30 Number of successful extensions: 5 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 463 Length of database: 498 Length adjustment: 34 Effective length of query: 429 Effective length of database: 464 Effective search space: 199056 Effective search space used: 199056 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.4 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.7 bits) S2: 51 (24.3 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory