Align Alpha-aminoadipic semialdehyde dehydrogenase; Alpha-AASA dehydrogenase; Aldehyde dehydrogenase family 7 member A1; Antiquitin-1; Betaine aldehyde dehydrogenase; Delta1-piperideine-6-carboxylate dehydrogenase; P6c dehydrogenase; EC 1.2.1.31; EC 1.2.1.3; EC 1.2.1.8 (characterized)
to candidate CCNA_00865 CCNA_00865 alpha-ketoglutaric semialdehyde dehydrogenase xylA
Query= SwissProt::Q64057 (539 letters) >lcl|FitnessBrowser__Caulo:CCNA_00865 CCNA_00865 alpha-ketoglutaric semialdehyde dehydrogenase xylA Length = 478 Score = 233 bits (595), Expect = 9e-66 Identities = 149/455 (32%), Positives = 230/455 (50%), Gaps = 10/455 (2%) Query: 71 PAN-NEPIARVRQASMKDYEETIGKAKKAWNIWADIPAPKRGEIVRKIGDALREKIQLLG 129 P+N N+ +A+V + + + A+KA+ WAD R +++ K+G + + +G Sbjct: 25 PSNTNDVVAKVPMGGQAEVDAAVDAARKAFPAWADASPEVRSDLLDKVGSTIIARSADIG 84 Query: 130 RLVSLEMGKILVEGIGEVQEYVDVCDYAAGLSRMIGGPTLPSERPGHALMEQWNPLGLVG 189 RL++ E GK L EGIGE + Y AG + G L S RPG + +G+ G Sbjct: 85 RLLAREEGKTLAEGIGETVRAGRIFKYFAGEALRRHGQNLESTRPGVEIQTYRQAVGVYG 144 Query: 190 IITAFNFPVAVFGWNNAIALITGNVCLWKGAPTTSLVSIAVTKIIAKVLEDNLLPGAICS 249 +IT +NFP+A+ W A AL GN + K A T A ++A ++ + P + + Sbjct: 145 LITPWNFPIAIPAWKAAPALAFGNTVVIKPAGPTP----ATANVLADIMAECGAPAGVFN 200 Query: 250 LTCGGADMGTAMARDERVNLLSFTGSTQVGKQVALMVQERFGKSLLELGGNNAIIAFEDA 309 + G MG A+ + + V+ +SFTGS VG QVA R + LE+GG N +I +DA Sbjct: 201 MLFGRGSMGDALIKHKDVDGVSFTGSQGVGAQVAAAAVARQARVQLEMGGKNPLIVLDDA 260 Query: 310 DLSLVLPSALFAAVGTAGQRCTTVRRLFLHESIHDEVVDRLKNAYSQIRVGNPWDPNILY 369 DL + AL + GQRCT RL + + IHD+ V L + +RVG+ DPN Sbjct: 261 DLERAVAIALDGSFFATGQRCTASSRLIVQDGIHDKFVALLAEKVAALRVGDALDPNTQI 320 Query: 370 GPLHTKQAVSMFVQAVEEAKKEGGTVVYGGK--VMDHPGNYVEPTIVTGLVHDAPIVHKE 427 GP ++ + + ++ A EGG VV GG +D+PG YV PT++ I ++E Sbjct: 321 GPAVSEDQMETSYRYIDIAASEGGRVVTGGDRIKLDNPGWYVRPTLIADTQAGMRINNEE 380 Query: 428 TFAPILYVFKFKNEEEVFEWNNEVKQGLSSSIFTKDLGRIFRWLGPKGSDCGIVNVNIPT 487 F P+ + K+ EE E N V+ GLS+ I T L + + + G+ VN+ T Sbjct: 381 VFGPVASTIRVKSYEEALEIANGVEFGLSAGIATTSLKHARHF--QRYARAGMTMVNLAT 438 Query: 488 SGAEIGGAFGGEKHTG-GGRESGSDAWKQYMRRST 521 +G + FGG K + G RE G A + + + T Sbjct: 439 AGVDYHVPFGGTKSSSYGAREQGFAAVEFFTQTKT 473 Lambda K H 0.319 0.137 0.417 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 663 Number of extensions: 33 Number of successful extensions: 5 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 2 Number of HSP's successfully gapped: 1 Length of query: 539 Length of database: 478 Length adjustment: 34 Effective length of query: 505 Effective length of database: 444 Effective search space: 224220 Effective search space used: 224220 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.4 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.7 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the preprint on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory