Align L-piperidine-6-carboxylate dehydrogenase; EC 1.2.1.21 (characterized, see rationale)
to candidate CCNA_01274 CCNA_01274 piperideine-6-carboxylate dehydrogenase
Query= uniprot:Q88CC3 (496 letters) >lcl|FitnessBrowser__Caulo:CCNA_01274 CCNA_01274 piperideine-6-carboxylate dehydrogenase Length = 507 Score = 646 bits (1666), Expect = 0.0 Identities = 327/493 (66%), Positives = 386/493 (78%), Gaps = 2/493 (0%) Query: 5 LLERLGVAAEAYTQGDYPVHTPIDGSQIASVKLLGKAETIARIDQAQSAFEAWRSVPAPR 64 +L +LG G+ PV PIDG+ + V + A++ A AF WR VPAPR Sbjct: 15 ILAKLGAPPLPADAGE-PVRGPIDGAILGHVVYDDARQIEAKVAAACRAFADWRVVPAPR 73 Query: 65 RGELVRLFGEVLREHKADLGELVSIEAGKITQEGLGEVQEMIDICDFAVGLSRQLYGLTI 124 RGELVRLFGE LR KADL LV++EAGKI E GEVQEMIDICDFAVGLSRQL+GLTI Sbjct: 74 RGELVRLFGEELRAAKADLAALVTLEAGKIASEAAGEVQEMIDICDFAVGLSRQLHGLTI 133 Query: 125 ASERPGHHMRETWHPLGVVGVISAFNFPVAVWAWNTALALVAGNSVVWKPSEKTPLTALA 184 ASERPGH MRETWHPLG V VISAFNFPVAVWAWN LALV G+ V+WKPSEKTPLTALA Sbjct: 134 ASERPGHAMRETWHPLGPVAVISAFNFPVAVWAWNACLALVCGDPVIWKPSEKTPLTALA 193 Query: 185 CQALFEKALKAFGDAPAGLAQLVIGGREAGEAMVDDPRVPLVSATGSTRMGREVGPRVAA 244 QA+ E+AL F DAP GL+ +V+G R+AGE + DPR+PLVSATGSTRMGR V P VA Sbjct: 194 TQAILERALARFRDAPQGLSSVVLGARDAGERLARDPRIPLVSATGSTRMGRAVAPMVAE 253 Query: 245 RFGRSILELGGNNAMILAPSADLDLAVRGILFSAVGTAGQRCTTLRRLIVHRSIKDEVVA 304 RFGRSILELGGNNAMI+ PSADL LA+R I+FSA GTAGQRCT+LRRLIVH S+ D+V Sbjct: 254 RFGRSILELGGNNAMIVTPSADLSLALRAIVFSAAGTAGQRCTSLRRLIVHESLVDKVSD 313 Query: 305 RVKAAYGKVRIGDPR-KDNLVGPLIDKQSFDAMQGALAKARDEGGQVFGGERQLADQYPN 363 V+AA+ ++ +GDPR L+GPLIDK ++DA A+ + R EGG V GGER L D++P+ Sbjct: 314 AVEAAFQRLSVGDPRDPKTLLGPLIDKAAYDAFIAAMNQVRAEGGSVAGGERVLIDEHPD 373 Query: 364 AYYVSPAIAEMPAQSDVVRHETFAPILYVLAYDDFEEALRLNNEVPQGLSSCIFTTDIRE 423 AYYV PA+A +PA + ++ ETFAP+L+V+ Y+ F+ A+ + N+VPQGLSSC+ T D+RE Sbjct: 374 AYYVRPALARLPAPAPCMQRETFAPLLHVVPYNSFDMAIAIQNDVPQGLSSCVMTNDVRE 433 Query: 424 AERFQSASGSDCGIANVNIGTSGAEIGGAFGGEKETGGGRESGSDAWKGYMRRQTNTVNY 483 AERF +A+GSDCGIANVNIG SGAEIGGAFGGEKETGGGRESGSD+WK YMRRQT TVNY Sbjct: 434 AERFLAAAGSDCGIANVNIGPSGAEIGGAFGGEKETGGGRESGSDSWKQYMRRQTATVNY 493 Query: 484 SRELPLAQGIVFD 496 S LPLAQG+ FD Sbjct: 494 SGALPLAQGVRFD 506 Lambda K H 0.318 0.135 0.396 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 780 Number of extensions: 28 Number of successful extensions: 3 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 496 Length of database: 507 Length adjustment: 34 Effective length of query: 462 Effective length of database: 473 Effective search space: 218526 Effective search space used: 218526 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.3 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.7 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the preprint on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory