GapMind for catabolism of small carbon sources

 

Alignments for a candidate for lysN in Caulobacter crescentus NA1000

Align Aspartate aminotransferase; AAT; AspAT; Putative 2-aminoadipate transaminase; Transaminase A; EC 2.6.1.1; EC 2.6.1.39 (characterized)
to candidate CCNA_01603 CCNA_01603 aspartate aminotransferase

Query= SwissProt::P58350
         (410 letters)



>FitnessBrowser__Caulo:CCNA_01603
          Length = 400

 Score =  460 bits (1183), Expect = e-134
 Identities = 228/392 (58%), Positives = 285/392 (72%)

Query: 15  ASRISSIGVSEILKIGARAAAMKREGKPVIILGAGEPDFDTPEHVKQAASDAIHRGETKY 74
           ++ +  I  S  + I A+A A+K  G+ VI L AGEPDFDTP+++K AA +AI  G+TKY
Sbjct: 5   SAALRRIAPSATIAISAKARALKAAGRDVIALSAGEPDFDTPDNIKNAAIEAIKAGKTKY 64

Query: 75  TALDGTPELKKAIREKFQRENGLAYELDEITVATGAKQILFNAMMASLDPGDEVIIPTPY 134
           T  DG PELK AI  KF+RENGL Y+  +I VA G K +++NA++A+L+PGDEVIIP PY
Sbjct: 65  TDPDGMPELKAAICAKFKRENGLEYKPSQIHVAPGGKPVIYNALVATLNPGDEVIIPAPY 124

Query: 135 WTSYSDIVHICEGKPVLIACDASSGFRLTAEKLEAAITPRTRWVLLNSPSNPSGAAYSAA 194
           W SY D+  +  G PV +   A SGF++T E LEAAITP+T+W+++NSPSNPSG AYS A
Sbjct: 125 WVSYPDMTLLAGGTPVSVETTAESGFKITPEALEAAITPKTKWLIINSPSNPSGGAYSRA 184

Query: 195 DYRPLLEVLLRHPHVWLLVDDMYEHIVYDGFRFVTPAQLEPGLKNRTLTVNGVSKAYAMT 254
           + + + +VLLRHP VW+L DDMYEH+V+D F F T AQ+EP L +RTLT+NGVSK Y+MT
Sbjct: 185 ELQAIADVLLRHPQVWVLTDDMYEHLVFDDFEFTTIAQVEPKLYDRTLTMNGVSKGYSMT 244

Query: 255 GWRIGYAGGPRELIKAMAVVQSQATSCPSSISQAASVAALNGPQDFLKERTESFQRRRDL 314
           GWRIGYA GP  LIKAM  + SQ TS P SISQ A++ ALNG QDF+K   + FQ RRDL
Sbjct: 245 GWRIGYAAGPEPLIKAMGKMISQTTSNPCSISQWAALEALNGTQDFIKPNAKLFQERRDL 304

Query: 315 VVNGLNAIDGLDCRVPEGAFYTFSGCAGVLGKVTPSGKRIKTDTDFCAYLLEDAHVAVVP 374
           VV+ LN   GL C  PEGAFY +  CAG++GK  PSGK I++D DF   LLE   VAVV 
Sbjct: 305 VVSMLNQATGLHCPTPEGAFYVYPSCAGLIGKTAPSGKVIESDEDFATELLESEGVAVVH 364

Query: 375 GSAFGLSPFFRISYATSEAELKEALERIAAAC 406
           G+AFGLSPFFRISYATS   L++A  RI   C
Sbjct: 365 GAAFGLSPFFRISYATSNEVLEDACSRIQRFC 396


Lambda     K      H
   0.318    0.134    0.393 

Gapped
Lambda     K      H
   0.267   0.0410    0.140 


Matrix: BLOSUM62
Gap Penalties: Existence: 11, Extension: 1
Number of Sequences: 1
Number of Hits to DB: 535
Number of extensions: 18
Number of successful extensions: 1
Number of sequences better than 1.0e-02: 1
Number of HSP's gapped: 1
Number of HSP's successfully gapped: 1
Length of query: 410
Length of database: 400
Length adjustment: 31
Effective length of query: 379
Effective length of database: 369
Effective search space:   139851
Effective search space used:   139851
Neighboring words threshold: 11
Window for multiple hits: 40
X1: 16 ( 7.3 bits)
X2: 38 (14.6 bits)
X3: 64 (24.7 bits)
S1: 41 (21.7 bits)
S2: 50 (23.9 bits)

This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.

Links

Downloads

Related tools

About GapMind

Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.

A candidate for a step is "high confidence" if either:

where "other" refers to the best ublast hit to a sequence that is not annotated as performing this step (and is not "ignored").

Otherwise, a candidate is "medium confidence" if either:

Other blast hits with at least 50% coverage are "low confidence."

Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:

GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).

For more information, see:

If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know

by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory