Align phenylacetate-CoA ligase (EC 6.2.1.30) (characterized)
to candidate CCNA_01382 CCNA_01382 long-chain-fatty-acid--CoA ligase
Query= BRENDA::D3GE78 (556 letters) >FitnessBrowser__Caulo:CCNA_01382 Length = 583 Score = 214 bits (544), Expect = 1e-59 Identities = 153/507 (30%), Positives = 244/507 (48%), Gaps = 35/507 (6%) Query: 58 LAAGLRKSGLQRGDRVLLFSGNDLFFPVVFLGVIMAGGIFTGANPTFVARELAYQLQDSG 117 +AA L G+Q+GDRV + N +PV F G + G I T N + EL Y L DSG Sbjct: 87 MAAELESFGVQKGDRVAIVMRNLPEWPVAFYGALSLGAIVTPLNAWWTGPELEYGLVDSG 146 Query: 118 ATYLLCASNSLE-TGLEAAKQAKLPQSHIFAYDTSIYDGVTNPQKGCAYWSDLLASEEEG 176 A + E G L + Y + + +T+P + + G Sbjct: 147 AKVAIVDVERYERMGEHLHNCPDLKR----VYVSRAKEEITHPYV-------IPLESKIG 195 Query: 177 AAFTW---DELSTPALSSTT---LALNYSSGTTGRPKGVEISHRNYVANML--------Q 222 A W DE P ++ T + Y+SGTTG+PKG +HRN +N+ Sbjct: 196 GANDWAKLDEKPLPTVAITADDDATIFYTSGTTGKPKGAIATHRNINSNIFAAAAAGARA 255 Query: 223 YCHTASLHPDYKARLERSRWLCFLPMYHAMAQNIFIAAALYRATPVYIMSKFDFVKMLEY 282 + P + L +P +HA + +L+ + +M K+D + ++ Sbjct: 256 FLRRGEAPPQPDPSAPQKGALLSVPFFHATGCFAVLNPSLFAGAKLAMMRKWDPERAMQV 315 Query: 283 TQRFRITDFILVPPVVVALAKHPAVGQYDLSSVELVGSGAAPLGREVCEEVEKLWPPGKI 342 Q ++T VP + + +HP YDLSS+E V G AP E+ +++++WP K Sbjct: 316 IQDEKLTQMGGVPTIAWQIIEHPNRANYDLSSIEAVAYGGAPSAPELVRKIKEIWP--KS 373 Query: 343 NIKQGWGMTEATCSVTGWNPAE--ISTSASVGELNANCEAKIMFDGVEVKER--NSRGEL 398 + GWGMTE + + T N AE + S G + KIM +E GEL Sbjct: 374 SPGNGWGMTETSATATS-NSAEDYENRPDSCGPAVPVTDLKIMTVEAPYRELPIGEVGEL 432 Query: 399 WVRAPNVMKGYWRNEKATKETKTEDGWLLTGDIAFVDDDGKFHVVDRMKELIKVKGNQVA 458 W + P V++GYW +AT +T DGW+ TGD+A +D +G ++DR K+++ G + Sbjct: 433 WCKGPQVVRGYWNKPEATAQTFV-DGWVRTGDLARLDAEGFCFIIDRAKDMLIRGGENIY 491 Query: 459 PAELEALLLEHPAISDVAVIGVVINN-DERPRAYVVLRPGQSATANEIAHYLDNKVSAFK 517 E+E L +HPA+ D A++GV E P A V L+PG AT E+ ++ ++++AFK Sbjct: 492 CIEVENCLYDHPAVMDAALVGVPHKTLGEEPAAVVTLKPGAEATEAELRAFVADRLAAFK 551 Query: 518 RITGGVVFLEAIPKNPSGKILRMKLRE 544 V + E +P+N +GKI++ +L++ Sbjct: 552 VPVKVVFWPETLPRNANGKIMKNELKK 578 Lambda K H 0.319 0.134 0.403 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 765 Number of extensions: 40 Number of successful extensions: 8 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 2 Number of HSP's successfully gapped: 1 Length of query: 556 Length of database: 583 Length adjustment: 36 Effective length of query: 520 Effective length of database: 547 Effective search space: 284440 Effective search space used: 284440 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.4 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.7 bits) S2: 53 (25.0 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory