Align medium-chain acyl-CoA ligase (EC 6.2.1.2); phenylacetate-CoA ligase (EC 6.2.1.30) (characterized)
to candidate CCNA_02483 CCNA_02483 4-coumarate--CoA ligase
Query= BRENDA::O74725 (578 letters) >FitnessBrowser__Caulo:CCNA_02483 Length = 496 Score = 146 bits (369), Expect = 2e-39 Identities = 146/491 (29%), Positives = 217/491 (44%), Gaps = 67/491 (13%) Query: 85 LAVFALNTIDSLPLFWAVHRLGGVLTPANASYSAAELTHQLLDSKAKALVTCVPLLSISL 144 LAV A N + + L A RLG + P N SA+EL H L++ A++ + Sbjct: 56 LAVLAKNQVLLVILHLACARLGAMFAPLNWRLSASEL-HALIEDADPAMI-------VGD 107 Query: 145 EAAAKAGLPKNRIYLLDVPEQLLGGVKPPAGYKSVSELTQAGKSLPPVDELRWSAGEGAR 204 + A AGL LDV + P ++ E Sbjct: 108 DQLAAAGLDGVD---LDVLRAEIDCADPDTRARADRE----------------------- 141 Query: 205 RTAFVCYSSGTSGLPKGVMISHRNVIANTLQIKAFEQNYRDGGGTKPASTEVALGLLPQS 264 R + + Y+SGTSG PKG ++S RN+ + G K V L P Sbjct: 142 RPSLILYTSGTSGRPKGALLSERNLDQTAINF---------GRLGKVTHESVFLVDAPMF 192 Query: 265 HIYALVVIGHAGAYRGDQTIVLPKFELKSYLNAIQQ--YKISALFLVPPIIIHMLGTQDV 322 HI L+ G +V FE L + I+ F VP + ML Q Sbjct: 193 HIIGLITSIRPVLMHGGAILVSDGFEPARTLGRLGDPTLGITHYFCVPQMAA-MLRRQPA 251 Query: 323 CSKYDLSSVTSLFTGAAPLGMETAADFLK-LYPNILIRQGYGLTETCTVVSSTHPHDIWL 381 L +T++FTG AP A D L I + GYG++E TV P D L Sbjct: 252 FDASALRRLTAIFTGGAP---HPAPDIRAWLAEGIPMVDGYGMSEAGTVFGM--PADATL 306 Query: 382 -----GSSGALLPGVEARIVTPENKEITTYDSPGELVVRSPSVVLGYLNNEKATAETFV- 435 GS+G +P V RIV ++++ PGEL+++ +V GY + TA F Sbjct: 307 IDARAGSAGLCMPPVFTRIVDEQDRDCPP-GVPGELLLKGDNVFRGYWRRPEDTARAFTE 365 Query: 436 DGWMRTGDEAVIRRSPKGIEHVFIVDRIKELIKVKGLQVAPAELEAHILAHPDVSDCAVI 495 DGW RTGD A+ + ++VDR K++ G V PAE+EA + HP + +CAV+ Sbjct: 366 DGWFRTGDIALADAEG----YHWLVDRKKDMFISGGENVYPAEIEAALADHPAILECAVV 421 Query: 496 AIPDDRAGEVPKAIVVKSASAGSDESVSQALVKYVEDHKARHKWLKGGIRFVDAIPKSPS 555 +PD R GEV +V A D ++ ++ ++ED AR+K L + V A+P++ S Sbjct: 422 GVPDPRWGEVGHLVVTCREGAVLDLAL---ILSHLEDRLARYK-LPKALTLVAALPRTAS 477 Query: 556 GKILRRLIRDQ 566 GKI + ++R++ Sbjct: 478 GKIQKTVLRER 488 Lambda K H 0.316 0.134 0.392 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 687 Number of extensions: 49 Number of successful extensions: 8 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 2 Number of HSP's successfully gapped: 2 Length of query: 578 Length of database: 496 Length adjustment: 35 Effective length of query: 543 Effective length of database: 461 Effective search space: 250323 Effective search space used: 250323 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.3 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.6 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory