Align Basic amino acid/polyamine antiporter, APA family (characterized, see rationale)
to candidate CCNA_01242 CCNA_01242 amino acid permease
Query= uniprot:A0A1I1Y8J0 (492 letters) >lcl|FitnessBrowser__Caulo:CCNA_01242 CCNA_01242 amino acid permease Length = 531 Score = 437 bits (1123), Expect = e-127 Identities = 243/508 (47%), Positives = 320/508 (62%), Gaps = 37/508 (7%) Query: 16 ADLPGGGAHGEATLKRALTARHLVLLGIGAIIGAGIFVITGQAAAEHAGPAIVLSFVFAG 75 A + AH + LKR L +L+ LG+GAIIGAGIFV+TGQ A+ +AGPAI+LSF+ AG Sbjct: 13 ASIQKEAAHSQ--LKRTLGPINLMSLGVGAIIGAGIFVLTGQVASANAGPAIMLSFIVAG 70 Query: 76 IACALAALCYAEFAAMLPVSGSAYSYSYATLGEYVAWFVGWSLVLEYLFTVATVAAGWSG 135 IACALA LCYAE A+ +PVSGSAY+Y+Y TLGE AW +GW LVLEY +TVA GWSG Sbjct: 71 IACALAGLCYAELASTMPVSGSAYTYAYGTLGEVFAWIMGWLLVLEYGVAASTVAVGWSG 130 Query: 136 YFNKLLALIS------GWIGHDVSLPQT-LAAAPFTVVDGHIQATGMFINLPAVAIIAAI 188 Y L + G D + T L A G + A +NL A IA + Sbjct: 131 YVVSTLHALGINFPMIQVAGADAPMWATPLIQAVAAPGGGTMFAMTGTLNLVAAIGIAMV 190 Query: 189 TGLCYVGITQSAFVNSIIVAIKVTVILLFIAFATKYINPDNWHPFIPASEG-ASKYGWAG 247 + L VG+++SA VN+ IV IKV V++ FIA +YINP NWHPFIP G ++G G Sbjct: 191 SALLVVGVSESANVNNAIVVIKVIVLVTFIAVGAQYINPANWHPFIPEPTGQPGEFGIGG 250 Query: 248 VGRAAAIVFFSYIGFDAVSTAAGEAKNPQRDMPIGIIGSLILCTILYIIVAGILTGIADF 307 + R AAI+FF+Y+GF+AVSTAA EAKNP RD+PIGI+G+LI+CT++Y+ VA ++TG+ F Sbjct: 251 IFRGAAIIFFAYVGFEAVSTAAAEAKNPSRDVPIGILGALIICTLIYMAVAAVMTGVVPF 310 Query: 308 RLLGTPEPVSTALDNYPSLHW---------------LQIIVVIGAVTGLSSVMLVMLMGQ 352 R L +P P++ A+D L W L + IGA+TGLSSVMLV+ GQ Sbjct: 311 RELASPAPIAVAIDRM-GLEWADIPYAAAEGGKLNLLSFAIKIGAITGLSSVMLVLCYGQ 369 Query: 353 PRIFYSMARDGLIPAVFGRIHQKFRTPHVGTVVVGVLAAALGGLFNIGVLGEMVAMGTLL 412 RIFY+MARDGL+P VF IH KFRTP +GT+++GV+ A I +LG++V++GT + Sbjct: 370 TRIFYTMARDGLLPKVFAEIHPKFRTPWLGTILLGVVIAIAASFLPISLLGDLVSLGTAV 429 Query: 413 AFATVCIGVLVLRYTRPELPRAFRVPVPWIVCPLGALACMALFLQSF---LEH------- 462 AF+ VC+ V+ LR P+LPR F+VP G AC+ L Q+F + H Sbjct: 430 AFSIVCLSVIYLRIKHPDLPRPFKVPGGIFTAAAGIAACLFLPYQNFQPMIVHAMNDNPL 489 Query: 463 -WRWMLAWIAIGQAIYFLYGYSHSKLRK 489 + + A+G IY YGY HSKL K Sbjct: 490 PLMILGGYAAVGAIIYIAYGYWHSKLAK 517 Lambda K H 0.328 0.141 0.441 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 804 Number of extensions: 55 Number of successful extensions: 5 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 492 Length of database: 531 Length adjustment: 35 Effective length of query: 457 Effective length of database: 496 Effective search space: 226672 Effective search space used: 226672 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 15 ( 7.1 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 40 (21.7 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory