Align 4-aminobutyrate aminotransferase GabT; 5-aminovalerate transaminase; GABA aminotransferase; GABA-AT; Gamma-amino-N-butyrate transaminase; GABA transaminase; Glutamate:succinic semialdehyde transaminase; L-AIBAT; EC 2.6.1.19; EC 2.6.1.48 (characterized)
to candidate CCNA_00620 CCNA_00620 acetylornithine aminotransferase/succinyldiaminopimelate aminotransferase
Query= SwissProt::P22256 (426 letters) >FitnessBrowser__Caulo:CCNA_00620 Length = 392 Score = 193 bits (491), Expect = 7e-54 Identities = 129/393 (32%), Positives = 199/393 (50%), Gaps = 43/393 (10%) Query: 29 RAENCRVWDVEGREYLDFAGGIAVLNTGHLHPKVVAAVEAQLKKLSHTC--FQVLAYEPY 86 R E C ++D +GR+YLD A G+AV GH P++V A++ Q L H +++ A E Sbjct: 17 RGEGCWLYDQDGRDYLDLAAGVAVNTLGHGDPRLVQALKTQADILWHASNLYRLPAQEA- 75 Query: 87 LELCEIMNQKVPGDFAKKTLLVTTGSEAVENAVKIAR------AATKRSGTIAFSGAYHG 140 + + FA + +G+EAVE A+K AR +R + F A+HG Sbjct: 76 -----LATKLTDATFADRVFFANSGAEAVEAAIKTARRWQGAKGRPERYRVLTFGNAFHG 130 Query: 141 RTHYTLALTGKVNPYSAGMGLMPGHVYRALYPCPLHGISEDDAIASIHRIFKNDAAPEDI 200 RT T++ T ++ G P +Y A P + I + A +I Sbjct: 131 RTLATISATDQMKVRE---GFTP--LYDAFDTTPFNDI--EGAARAI---------TPQT 174 Query: 201 AAIVIEPVQGEGGFYASSPAFMQRLRALCDEHGIMLIADEVQSGAGRTGTLFAMEQMGVA 260 AAI++EP+QGEGG ++P F+ LRALCD+H ++LI DEVQ+G GRTG LFA E GV Sbjct: 175 AAILVEPIQGEGGLTPATPGFLAGLRALCDQHDLLLILDEVQTGIGRTGHLFAHELYGVR 234 Query: 261 PDLTTFAKSIAGGFPLAGVTGRAEVMDAVAPGGLGGTYAGNPIACVAALEVLKVFEQENL 320 PD+ AK + GGFP+ + + PG G TY GNP+AC A VL Sbjct: 235 PDIIAVAKGLGGGFPIGACLATEDAASGMTPGSHGSTYGGNPLACAVASAVLDAVLAPGF 294 Query: 321 LQKANDLGQKLKDGLLAIAEKHPEI-GDVRGLGAMIAIELFEDGDHNKPDAKLTAEIVAR 379 L+ + + L + +H ++ +G G M +++ + A+ ++VA Sbjct: 295 LETVRERAALVDALLERLLRRHSDLFVRAQGHGLMRGLQV-------RASAR---DVVAH 344 Query: 380 ARDKGLILLSCGPYYNVLRILVPLTIEDAQIRQ 412 RD G++ ++ G +V+R+L PLTI + +I + Sbjct: 345 LRDFGVMTVAAGA--DVVRLLPPLTISELEIAE 375 Lambda K H 0.320 0.137 0.401 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 393 Number of extensions: 21 Number of successful extensions: 5 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 426 Length of database: 392 Length adjustment: 31 Effective length of query: 395 Effective length of database: 361 Effective search space: 142595 Effective search space used: 142595 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.4 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.8 bits) S2: 50 (23.9 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory