Align acyl CoA carboxylase biotin carboxylase subunit (EC 2.1.3.15; EC 6.4.1.3; EC 6.3.4.14) (characterized)
to candidate CCNA_02250 CCNA_02250 methylcrotonyl-CoA carboxylase biotin-containing subunit
Query= metacyc::MONOMER-13597 (509 letters) >FitnessBrowser__Caulo:CCNA_02250 Length = 654 Score = 350 bits (899), Expect = e-101 Identities = 196/474 (41%), Positives = 280/474 (59%), Gaps = 9/474 (1%) Query: 5 SRVLVANRGEIATRVLKAIKEMGMTAIAVYSEADKYAVHTKYADEAYYIGKAPALDSYLN 64 S VL+ANRGEIA R+++ +E+G+ IAVYSEAD A AD A IG APA +SYL+ Sbjct: 3 SSVLIANRGEIARRIIRTARELGVRTIAVYSEADANAPFVMEADAAILIGPAPAKESYLD 62 Query: 65 IEHIIDAAEKAHVDAIHPGYGFLSENAEFAEAVEKAGITFIGPSSEVMRKIKDKLDGKRL 124 I+ AA + +AIHPGYGFLSENAEFA++V AG+ +IGP +R + K K + Sbjct: 63 PRKILAAARQMGAEAIHPGYGFLSENAEFAQSVIDAGLVWIGPPPSAIRAMGLKDAAKAV 122 Query: 125 ANMAGVPTAPGSDGPVTSIDEALKLAEKIGYPIMVKAASGGGGVGITRVDNQDQLMDVWE 184 AGVPT PG G S++ A KIGYP+++KA +GGGG G+ +V+ + Sbjct: 123 MIKAGVPTTPGYLGEDQSVERLTVEAAKIGYPVLIKAVAGGGGKGMRKVERAEDFEAALG 182 Query: 185 RNKRLAYQAFGKADLFIEKYAVNPRHIEFQLIGDKYGNYVVAWERECTIQRRNQKLIEEA 244 +R A AFG + +EKY PRHIE Q+ GD +GN V +ER+C++QRR+QK+IEEA Sbjct: 183 SCRREASAAFGDDRVLLEKYVTRPRHIEVQVFGDSHGNVVHLFERDCSLQRRHQKVIEEA 242 Query: 245 PSPALKMEERESMFEPIIKFGKLINYFTLGTFETAFSDVSRD-----FYFLELNKRLQVE 299 P+P + RE++ +K + +NY GT E +D S +F+E+N RLQVE Sbjct: 243 PAPGMDEATREAVCAAAVKAAQAVNYVGAGTVE-FIADASEGLRADRIWFMEMNTRLQVE 301 Query: 300 HPTTELIFRIDLVKLQIKLAAGEHLPFSQEDLNKRVRGTAIEYRINAEDALNNFTGSSGF 359 HP TE++ DLV+ Q+++A+GE LP Q+++ + G A+E R+ AE+ F S+G Sbjct: 302 HPVTEMVTGQDLVEWQLRVASGEPLPLEQDEIT--LDGWAMEARLYAENPATGFLPSTGK 359 Query: 360 VTYYREPTGPGVRVDSGIESGSYVPPYYDSLVSKLIVYGESREYAIQAGIRALADYKIGG 419 + ++R P G VRVDS +E G V P+YD +++KLI +G RE A Q A A ++ Sbjct: 360 LKHFRLPEG-DVRVDSAVEEGGEVTPFYDPMIAKLIAHGADREDAAQRLAEACALVEVWP 418 Query: 420 IKTTIELYKWIMQDPDFQEGKFSTSYISQKTDQFVKYLREQEEIKAAIAAEIQS 473 +KT PDF +G T +I + D+ + E AAI + S Sbjct: 419 VKTNAAFLAKCASHPDFVDGAVDTGFIEARLDELTERAFSDEPAMAAIGWRLDS 472 Lambda K H 0.317 0.135 0.385 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 797 Number of extensions: 37 Number of successful extensions: 4 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 509 Length of database: 654 Length adjustment: 36 Effective length of query: 473 Effective length of database: 618 Effective search space: 292314 Effective search space used: 292314 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.3 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.6 bits) S2: 53 (25.0 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory