Align NAD+-dependent L-lactaldehyde dehydrogenase (EC 1.2.1.22) (characterized)
to candidate CCNA_03242 CCNA_03242 succinic semialdehyde dehydrogenase
Query= metacyc::MONOMER-16246 (477 letters) >lcl|FitnessBrowser__Caulo:CCNA_03242 CCNA_03242 succinic semialdehyde dehydrogenase Length = 485 Score = 314 bits (805), Expect = 4e-90 Identities = 186/461 (40%), Positives = 253/461 (54%), Gaps = 3/461 (0%) Query: 12 IDGAFVESAAHLEVFNPANGALLSRVPAASAEEVERALAAARAAQKDWARKPAIERAGHL 71 IDG +V A +V NPA+G L++ V A E A+ AA A WA + A ER L Sbjct: 16 IDGQWVRGEASFDVLNPADGTLIAAVADLGAAETTLAIDAAHRALPAWAARTAKERGAIL 75 Query: 72 RRIAAKIRADAGRIARTITLEQGKIASLAEVEVNFTADYLDYMAEWARRLEGEIIASDRP 131 RR + I A A +AR +T EQGK + A+ EV + A ++D+ AE A+R G I + P Sbjct: 76 RRWSDLILAHADDLARLMTDEQGKPLAEAKGEVVYGASFIDWFAEEAKRAYGHTIPTPMP 135 Query: 132 GENIFLFRKPLGVVAGILPWNFPFFLIARKMAPALLTGNTIVVKPSEETPNNCFEFARLV 191 G+ + ++P+GV A I PWNFP +I RK+ PAL G T+VVKP+ ETP + ARL Sbjct: 136 GKRLASIKQPVGVCAAIAPWNFPIAMITRKVGPALAAGCTVVVKPAAETPLSALAIARLA 195 Query: 192 AETDLPRGVFNVV--CGAGQVGGALSSHPGVDLISFTGSVETGARIMAAAAPNLTKLNLE 249 E +P GV N+V + +VG L V +SFTGS G + A + KL+LE Sbjct: 196 TEAGVPAGVLNIVTTTRSSEVGKVLCDDSRVRKLSFTGSTPIGKVLYQQCAGTMKKLSLE 255 Query: 250 LGGKAPAIVLADADLELAVKAIRDSRIINSGQVCNCAERVYVQRQVAEPFIERIAAAMAA 309 LGG AP IV DADLE AV S+ N+GQ C CA R+ VQ + + F R+A +AA Sbjct: 256 LGGNAPFIVFDDADLEAAVDGAIASKYRNAGQTCVCANRLIVQSGIHDAFAARLAEKVAA 315 Query: 310 TRYGDPLAEPEVEMGPLINRLGLEKIDAKVRTALAQGATLVTGGAIAERPGHHYQPTVLT 369 + G E V++GPLIN L K+ V A+ GA ++TGG + GH YQPTVL Sbjct: 316 LKVGPGTGE-GVQIGPLINEKALTKVVGLVSGAVQAGAEVLTGGDVHGLGGHFYQPTVLV 374 Query: 370 GCRADTRIMREEIFGPVLPIQIVDDLDEAIALANDCEYGLTSSVFTRDLNKAMHALRELD 429 G + RI +EEIFGPV PI + EA+ LAN +GL + ++RD+ + +++ Sbjct: 375 GATPEMRIFQEEIFGPVAPIVKFETEAEAVELANATPFGLAAYFYSRDVGRCWRVAEQIE 434 Query: 430 FGETYINREHFEAMQGFHAGVRKSGIGGADGKHGLYEYTHT 470 G IN GV++SG+G GL EY T Sbjct: 435 AGMVGINEGLISTEVAPFGGVKESGLGREGASEGLDEYLET 475 Lambda K H 0.320 0.136 0.395 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 553 Number of extensions: 21 Number of successful extensions: 3 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 477 Length of database: 485 Length adjustment: 34 Effective length of query: 443 Effective length of database: 451 Effective search space: 199793 Effective search space used: 199793 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.4 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.8 bits) S2: 51 (24.3 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the preprint on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory