Align ABC-type sugar transport system, ATP-binding protein; EC 3.6.3.17 (characterized, see rationale)
to candidate CCNA_00903 CCNA_00903 inositol transport ATP-binding protein IatA
Query= uniprot:A0A0C4Y5F6 (540 letters) >FitnessBrowser__Caulo:CCNA_00903 Length = 515 Score = 381 bits (979), Expect = e-110 Identities = 228/519 (43%), Positives = 321/519 (61%), Gaps = 23/519 (4%) Query: 13 LLALRNICKTFPGVRALRKVELTAYAGEVHALMGENGAGKSTLMKILSGAYTADPGGECH 72 LL + + K+FPGVRAL +V+L GEVHAL+GENGAGKSTL+KILS A+ AD G Sbjct: 3 LLDVSQVSKSFPGVRALDQVDLVVGVGEVHALLGENGAGKSTLIKILSAAHAADAGTVTF 62 Query: 73 IDGQRVQIDGPQSARDLGVAVIYQELSLAPNLSVAENIYLGRALQRRGLVARGDMVRACA 132 D P + LG+A IYQE +L P LSVAEN+YLGR +R GLV + Sbjct: 63 AGQVLDPRDAPLRRQQLGIATIYQEFNLFPELSVAENMYLGREPRRLGLVDWSRLRADAQ 122 Query: 133 PTLARLGADFSPAANVASLSIAQRQLVEIARAVHFEARILVMDEPTTPLSTHETDRLFAL 192 L LG +P A V L++A++Q+VEIA+A+ AR+++MDEPT LS E DRL A+ Sbjct: 123 ALLNDLGLPLNPDAPVRGLTVAEQQMVEIAKAMTLNARLIIMDEPTAALSGREVDRLHAI 182 Query: 193 IRQLRGEGMAILYISHRMAEIDELADRVTVLRDGCFVGTLDRAHLSQAALVKMMVGRDLS 252 I L+ ++++Y+SHR+ E+ + DR TV+RDG FV + D A + A +V++MVGR + Sbjct: 183 IAGLKARSVSVIYVSHRLGEVKAMCDRYTVMRDGRFVASGDVADVEVADMVRLMVGRHVE 242 Query: 253 GFYTKTHGQAVEREVMLSVRDVADGR-------RVKGCSFDLRAGEVLGLAGLVGAGRTE 305 + + + V+L V V ++ SF R GE++GLAGLVGAGRT+ Sbjct: 243 --FERRKRRRPPGAVVLKVEGVTPAAPRLSAPGYLRQVSFAARGGEIVGLAGLVGAGRTD 300 Query: 306 LARLVFGADARTRGEVRIANPAGSGGLVTLPAGGPRQAIDAGIAYLTEDRKLQGLFLDQS 365 LARL+FGAD G V + + L PR AI AGI + EDRK QG FLD S Sbjct: 301 LARLIFGADPIAAGRVLVDDK-------PLRLRSPRDAIQAGIMLVPEDRKQQGCFLDHS 353 Query: 366 VHENINL-IVAARDALGLGRLNRTAARRRTTEAIDTLGIRVAHAQVNVGALSGGNQQKVM 424 + N++L + A ALG ++ A R L I++A A+ +G LSGGNQQKV+ Sbjct: 354 IRRNLSLPSLKALSALGQW-VDERAERDLVETYRQKLRIKMADAETAIGKLSGGNQQKVL 412 Query: 425 LSRLLEIQPRVLILDEPTRGVDIGAKSEIYRLINALAQSGVAILMISSELPEVVGLCDRV 484 L R + + P+VLI+DEPTRG+DIGAK+E++++++ LA GVA+++ISSEL EV+ + DR+ Sbjct: 413 LGRAMALTPKVLIVDEPTRGIDIGAKAEVHQVLSDLADLGVAVVVISSELAEVMAVSDRI 472 Query: 485 LVMREGTLAGEVRPAGSAAETQERIIA-LATGA-AAAAP 521 +V REG + ++ + T+E ++A +ATG AAP Sbjct: 473 VVFREGVIVADL---DAQTATEEGLMAYMATGTDRVAAP 508 Lambda K H 0.320 0.136 0.382 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 701 Number of extensions: 39 Number of successful extensions: 9 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 540 Length of database: 515 Length adjustment: 35 Effective length of query: 505 Effective length of database: 480 Effective search space: 242400 Effective search space used: 242400 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.4 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.8 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory