Align Probable glycine dehydrogenase (decarboxylating) subunit 1; EC 1.4.4.2; Glycine cleavage system P-protein subunit 1; Glycine decarboxylase subunit 1; Glycine dehydrogenase (aminomethyl-transferring) subunit 1 (uncharacterized)
to candidate CCNA_03463 CCNA_03463 glycine cleavage system protein P, N-terminal domain
Query= curated2:Q0BYP2 (447 letters) >lcl|FitnessBrowser__Caulo:CCNA_03463 CCNA_03463 glycine cleavage system protein P, N-terminal domain Length = 448 Score = 597 bits (1539), Expect = e-175 Identities = 304/446 (68%), Positives = 347/446 (77%), Gaps = 1/446 (0%) Query: 1 MRYLPLTPEDRANMLATIGAKSVDDFYTDVPDAARLKGKIAGLPDHQGELAVERHLTKLA 60 MRYLPLTPEDR ML IG KS+DD + DVP +AR + LP H GEL VER + LA Sbjct: 1 MRYLPLTPEDRVEMLGAIGVKSIDDLFVDVPVSARRDAPV-DLPHHAGELDVEREMAGLA 59 Query: 61 AKNRSASSGPFFVGAGAYKHHVPATVDMIIQRSEFLTTYTPYQPEIAQGTLQTLFEFQTQ 120 +NR+A GPFF GAGAY+HHVPATVD IIQRSEFLT+YTPYQPEIAQGTLQ LFEFQTQ Sbjct: 60 RRNRAAGEGPFFCGAGAYRHHVPATVDHIIQRSEFLTSYTPYQPEIAQGTLQVLFEFQTQ 119 Query: 121 VASLTAMDVANASMYDGSTSCAEAAVMAARVTRRKKIILSGGLHPHYAAATRLLAEAQGL 180 VA+LT M+VANAS+YDGST AEA +MA RVTRR K ++SGG+HPHY A LA A G+ Sbjct: 120 VAALTGMEVANASLYDGSTGAAEAVMMAQRVTRRNKAVMSGGVHPHYVGAIETLAHAAGV 179 Query: 181 TVVQLPVAIDGEGELAKAVDGETACVIGQSPNVFGTVTDLSAVADAAHGKGALLVSVFTE 240 LP A+D E + A+D +TACV+ Q+PNVFGTVTD+S +A+AAH GALL+ V TE Sbjct: 180 ATQALPAAVDAEDAVIAAIDQDTACVVVQTPNVFGTVTDVSKIAEAAHAAGALLIVVTTE 239 Query: 241 AVSLGLVTPPGEMGADIAAGEGQSIGNGLNFGGPYVGLFSCREKLVRQMPGRLCGETVDA 300 AVS GL+ PGEMGADIA EGQSIGNGLNFGGPYVGLF+C+EK VRQMPGRLCGETVDA Sbjct: 240 AVSFGLLKSPGEMGADIAVAEGQSIGNGLNFGGPYVGLFACKEKFVRQMPGRLCGETVDA 299 Query: 301 DGKRGFVLTLSTREQHIRRDKATSNICTNSGLCALAFTSHMTLLGGKGLKQLAELNHEAA 360 DGKRGFVLTLSTREQHIRRDKATSNICTNSGLCALAF+ HM+LLG GL+QLA +NH+ A Sbjct: 300 DGKRGFVLTLSTREQHIRRDKATSNICTNSGLCALAFSIHMSLLGETGLRQLAAVNHQKA 359 Query: 361 IELADALGAVKGVEILTPRFFNEFAIRTPMDAEAVLAMLDEAGVVGGVRASRLFPGDHLG 420 + L DAL AV GVEILTPRFFNEFAIR P A V+ +L GV+ GV SRL L Sbjct: 360 LALRDALKAVPGVEILTPRFFNEFAIRVPGKAAEVVEILAAHGVIAGVPFSRLDAKAGLD 419 Query: 421 DVILVAATECTTADDIAAYTDALKEI 446 DV+LVAATE T DI + AL ++ Sbjct: 420 DVLLVAATETTLDIDIPVFAKALTKV 445 Lambda K H 0.318 0.134 0.382 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 617 Number of extensions: 21 Number of successful extensions: 2 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 447 Length of database: 448 Length adjustment: 33 Effective length of query: 414 Effective length of database: 415 Effective search space: 171810 Effective search space used: 171810 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.3 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.7 bits) S2: 51 (24.3 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the preprint on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory