Align 3-hydroxypropionate dehydrogenase (EC 1.1.1.59) (characterized)
to candidate CCNA_00994 CCNA_00994 oxidoreductase, GMC family
Query= metacyc::MONOMER-15202 (579 letters) >FitnessBrowser__Caulo:CCNA_00994 Length = 555 Score = 419 bits (1076), Expect = e-121 Identities = 241/557 (43%), Positives = 334/557 (59%), Gaps = 35/557 (6%) Query: 37 DYIVVGAGTAGCLLANRLSADPANRVLLIEAGGRD----------NYHWIHIPVGYLYCI 86 DY++VGAG+AGC+LA RLS + +V+L+EAGG D + IHIPVGY + Sbjct: 8 DYVIVGAGSAGCVLAARLSENGRYKVVLLEAGGDDRPTKNLSQFASNMMIHIPVGYSSTL 67 Query: 87 NNPRTDWRFRTEPDPGLNGRSLIYPRGKTLGGCSSINGMLYLRGQARDYDGWAELTGDDA 146 +P+ +W F TEPDPG GRS ++PRGK LGG SSIN MLY+RGQA DYDGW +L G + Sbjct: 68 KDPKVNWLFTTEPDPGTGGRSHVWPRGKVLGGSSSINAMLYVRGQAADYDGWRQL-GCEG 126 Query: 147 WRWDNCLPDFMRHEDHYRLDEGGDADPDHYKFHGHGGEWRIEKQRLKWQVLADFATAAVE 206 W WD+ LP F + ++ E G D H GG + R + A + Sbjct: 127 WAWDDVLPYFRKAQN----QERGACD-----LHATGGPLNVADMRDAHPISEALIEACDQ 177 Query: 207 AGVPRTRDFNRGDNEGVDAFEVNQRSGWRWNASKAFLRGVEQRGNLTVWHSTQVLKLDFA 266 AG+PR D N D EG ++V Q++G R +++ A+L +R NL V + ++ F Sbjct: 178 AGIPRYPDLNGADQEGATWYQVTQKNGARCSSAVAYLHPAMKRPNLRVETNALAGRVLF- 236 Query: 267 SGEGSEPRCCGVTVERAGKKVVTTARCEVVLSAGAIGSPQLLQLSGIGPTALLAEHAIPV 326 EG R GV + G++ AR EV+L+ GAI SPQLLQLSG+G LL EH I V Sbjct: 237 --EGK--RAVGVEFMQNGERRAAMARGEVILAGGAINSPQLLQLSGVGAGGLLREHGIEV 292 Query: 327 VADLPGVGENLQDHLQIRSIYKVKGAKTLNTMANSLIGK-AKIGLEYILKRSGPMSMAPS 385 VADLPGVGENLQDH + + Y++K T++ S G+ A ++Y+L R G ++++ + Sbjct: 293 VADLPGVGENLQDHYIVAARYRLKSG-TVSVNEQSKGGRLAAEAMKYLLFRKGLLTLSAA 351 Query: 386 QLCIFTRSSKEYEHPNLEYHVQPLSLE---AFGQ---PLHDFPAITASVCNLNPTSRGTV 439 + F +S + P++++H+ P +++ F + L P +T + C L P SRG + Sbjct: 352 HVAAFCKSRPDLAGPDIQFHILPATMDLDKLFNEQKMELEGAPGMTIAPCQLRPESRGYI 411 Query: 440 RIKSGNPRQAPAISPNYLSTEEDRQVAADSLRVTRHIASQPAFAKYDPEEFKPGVQYQSD 499 RIKS +P PAI NYL+ D++V L+ R I QPA A+Y E PG++ Q+D Sbjct: 412 RIKSADPSVYPAIFANYLADPLDQEVIVAGLKWARKIGQQPAIAQYVESEMNPGLEVQTD 471 Query: 500 EDLARLAGDIGTTIFHPVGTAKMGRDDDPMAVVDSHLRVRGVTGLRVVDASIMPTITSGN 559 E L A G+T++HPVG+ +MG PMAVVD+ LRVRGV GLRVVDASIMP + SGN Sbjct: 472 EQLLDFARQTGSTLYHPVGSCQMG--TGPMAVVDAQLRVRGVEGLRVVDASIMPRLISGN 529 Query: 560 TNSPTLMIAEKAAGWIL 576 TN+P++MI EK A IL Sbjct: 530 TNAPSIMIGEKGADMIL 546 Lambda K H 0.318 0.135 0.418 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 921 Number of extensions: 39 Number of successful extensions: 8 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 579 Length of database: 555 Length adjustment: 36 Effective length of query: 543 Effective length of database: 519 Effective search space: 281817 Effective search space used: 281817 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.3 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.7 bits) S2: 53 (25.0 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory