Align 3-hydroxypropionate dehydrogenase (EC 1.1.1.59) (characterized)
to candidate CCNA_01337 CCNA_01337 GMC family oxidoreductase
Query= metacyc::MONOMER-15202 (579 letters) >FitnessBrowser__Caulo:CCNA_01337 Length = 540 Score = 577 bits (1487), Expect = e-169 Identities = 297/552 (53%), Positives = 375/552 (67%), Gaps = 15/552 (2%) Query: 26 MADQTNNTHAFDYIVVGAGTAGCLLANRLSADPANRVLLIEAGGRDNYHWIHIPVGYLYC 85 M D+ + +DYIVVGAG+AGCLLANRLSADP RVLL+EAGG DN+ W H+PVGYL+ Sbjct: 1 MGDEAIHLGDYDYIVVGAGSAGCLLANRLSADPRRRVLLLEAGGDDNWIWFHVPVGYLFA 60 Query: 86 INNPRTDWRFRTEPDPGLNGRSLIYPRGKTLGGCSSINGMLYLRGQARDYDGWAELTGDD 145 I NPR DW T P GL+GR L YPRGK +GG S+IN M+Y+RGQARDYDGW + G Sbjct: 61 IGNPRADWMLETTPQAGLDGRVLAYPRGKVIGGSSAINAMIYMRGQARDYDGWRQ-RGLA 119 Query: 146 AWRWDNCLPDFMRHEDHYRLDEGGDADPDHYKFHGHGGEWRIEKQRLKWQVLADFATAAV 205 W W + LP F++HEDH +D G+ H GGE+R+E R++W VL A Sbjct: 120 GWGWPDVLPYFLKHEDH--IDPRGE-------HHRAGGEYRVEHPRVRWDVLDAIRRAGE 170 Query: 206 EAGVPRTRDFNRGDNEGVDAFEVNQRSGWRWNASKAFLRGVEQRGNLTVWHSTQVLKLDF 265 +AG+ + DFN GDN G F+VNQR+G RW+ + AFL+ V R NL + +V +L Sbjct: 171 QAGIAQVDDFNGGDNAGSSYFQVNQRAGRRWSTATAFLKPVLSRPNLRLVKGVEVERLII 230 Query: 266 ASGEGSEPRCCGVTVERAGKKVVTTARCEVVLSAGAIGSPQLLQLSGIGPTALLAEHAIP 325 +G R G+ R G V + E++L+AGAIGSP +LQ SGIG L+ + Sbjct: 231 ---DGKRVR--GLRGRRGGAAVTASVSGELILAAGAIGSPVILQRSGIGRGETLSRAGVA 285 Query: 326 VVADLPGVGENLQDHLQIRSIYKVKGAKTLNTMANSLIGKAKIGLEYILKRSGPMSMAPS 385 +V DLPGVG NLQDHLQIR ++KV G +TLNT +L +A +GL+Y+L+RSGP++MAPS Sbjct: 286 MVHDLPGVGANLQDHLQIRPVFKVSGVRTLNTDYANLFRRAGMGLDYLLRRSGPLTMAPS 345 Query: 386 QLCIFTRSSKEYEHPNLEYHVQPLSLEAFGQPLHDFPAITASVCNLNPTSRGTVRIKSGN 445 QL +F RS EYE NLE+H QPLSL+ +G+ LH F A+TASVCNL P+SRG V + Sbjct: 346 QLGMFCRSGPEYESANLEFHFQPLSLDRWGEGLHRFGAVTASVCNLRPSSRGAVSLSGPG 405 Query: 446 PRQAPAISPNYLSTEEDRQVAADSLRVTRHIASQPAFAKYDPEEFKPGVQYQSDEDLARL 505 +P I PNYL+TEEDR+VA +SL+ R I Q A A Y PE F+PG + D L Sbjct: 406 LEHSPRIDPNYLATEEDRRVAVESLKWARRIMGQAALAAYAPEAFRPGPEVDGDAALLAA 465 Query: 506 AGDIGTTIFHPVGTAKMGRDDDPMAVVDSHLRVRGVTGLRVVDASIMPTITSGNTNSPTL 565 A + TTIFHPVGTA MG D DP+AV+D+ LRVRGV GLRV+DAS MPTITSGNTN+PT+ Sbjct: 466 AKALATTIFHPVGTAAMGADGDPLAVLDARLRVRGVEGLRVIDASAMPTITSGNTNAPTV 525 Query: 566 MIAEKAAGWILK 577 MIAEK A IL+ Sbjct: 526 MIAEKGAAMILE 537 Lambda K H 0.318 0.135 0.418 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 984 Number of extensions: 42 Number of successful extensions: 4 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 579 Length of database: 540 Length adjustment: 36 Effective length of query: 543 Effective length of database: 504 Effective search space: 273672 Effective search space used: 273672 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.3 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.7 bits) S2: 53 (25.0 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory