Align D-ribose transporter ATP-binding protein; SubName: Full=Putative xylitol transport system ATP-binding protein; SubName: Full=Sugar ABC transporter ATP-binding protein (characterized, see rationale)
to candidate CCNA_00903 CCNA_00903 inositol transport ATP-binding protein IatA
Query= uniprot:A0A1N7TX47 (495 letters) >FitnessBrowser__Caulo:CCNA_00903 Length = 515 Score = 317 bits (811), Expect = 8e-91 Identities = 190/495 (38%), Positives = 281/495 (56%), Gaps = 11/495 (2%) Query: 6 LLQAEHVAKAYAGVPALRDGRLSLRAGSVHALCGGNGAGKSTFLSILMGITQRDAGSILL 65 LL V+K++ GV AL L + G VHAL G NGAGKST + IL DAG++ Sbjct: 3 LLDVSQVSKSFPGVRALDQVDLVVGVGEVHALLGENGAGKSTLIKILSAAHAADAGTVTF 62 Query: 66 NGAPVQ-FNRPSEALAAGIAMITQELEPIPYMTVAENIWLGREPRRAGCIVDNKALNRRT 124 G + + P GIA I QE P ++VAEN++LGREPRR G +VD L Sbjct: 63 AGQVLDPRDAPLRRQQLGIATIYQEFNLFPELSVAENMYLGREPRRLG-LVDWSRLRADA 121 Query: 125 RELLDSLEFDVDATSPMHRLSVAQIQLVEIAKAFSHDCQVMIMDEPTSAIGEHEAQTLFK 184 + LL+ L ++ +P+ L+VA+ Q+VEIAKA + + +++IMDEPT+A+ E L Sbjct: 122 QALLNDLGLPLNPDAPVRGLTVAEQQMVEIAKAMTLNARLIIMDEPTAALSGREVDRLHA 181 Query: 185 AIRRLTAQGAGIVYVSHRLSELAQIADDYSIFRDGAFVESGRMADIDRDHLVRGIVGQEL 244 I L A+ ++YVSHRL E+ + D Y++ RDG FV SG +AD++ +VR +VG+ + Sbjct: 182 IIAGLKARSVSVIYVSHRLGEVKAMCDRYTVMRDGRFVASGDVADVEVADMVRLMVGRHV 241 Query: 245 TRIDHKVGRECAANTCLQVD-------NLSRAGEFHDISLQLRQGEILGIYGLMGSGRSE 297 + + R L+V+ LS G +S R GEI+G+ GL+G+GR++ Sbjct: 242 -EFERRKRRRPPGAVVLKVEGVTPAAPRLSAPGYLRQVSFAARGGEIVGLAGLVGAGRTD 300 Query: 298 FLNCIYGLTVADSGSVTLQGKPMPIGLPKATINAGMSLVTEDRKDSGLVLTGSILSNIAL 357 I+G +G V + KP+ + P+ I AG+ LV EDRK G L SI N++L Sbjct: 301 LARLIFGADPIAAGRVLVDDKPLRLRSPRDAIQAGIMLVPEDRKQQGCFLDHSIRRNLSL 360 Query: 358 SAYKRLSS-WSLINARKETQLAEDMVKRLQIKTTSLELPVASMSGGNQQKVVLAKCLSTE 416 + K LS+ ++ R E L E ++L+IK E + +SGGNQQKV+L + ++ Sbjct: 361 PSLKALSALGQWVDERAERDLVETYRQKLRIKMADAETAIGKLSGGNQQKVLLGRAMALT 420 Query: 417 PVCLLCDEPTRGIDEGAKQEIYHLLDQFVRGGGAAIVVSSEAPELLHLSDRIAVFKGGRL 476 P L+ DEPTRGID GAK E++ +L G A +V+SSE E++ +SDRI VF+ G + Sbjct: 421 PKVLIVDEPTRGIDIGAKAEVHQVLSDLADLGVAVVVISSELAEVMAVSDRIVVFREGVI 480 Query: 477 VTISTDTALSQEALL 491 V ++E L+ Sbjct: 481 VADLDAQTATEEGLM 495 Lambda K H 0.319 0.135 0.381 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 610 Number of extensions: 28 Number of successful extensions: 9 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 495 Length of database: 515 Length adjustment: 34 Effective length of query: 461 Effective length of database: 481 Effective search space: 221741 Effective search space used: 221741 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.4 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.8 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory