Align 2-hydroxymuconate-6-semialdehyde dehydrogenase (EC 1.2.1.85) (characterized)
to candidate Echvi_0481 Echvi_0481 NAD-dependent aldehyde dehydrogenases
Query= metacyc::MONOMER-15108 (486 letters) >FitnessBrowser__Cola:Echvi_0481 Length = 509 Score = 375 bits (963), Expect = e-108 Identities = 201/481 (41%), Positives = 293/481 (60%), Gaps = 14/481 (2%) Query: 13 HFIDGKFVPSLDGKTFDNINPATEEKLGTVAEGGAAEIDLAVQAAKKALNGPWKKMTANE 72 +FI GKFVP +DG+ FD I+P + VA G AA+I+LA+ AA KA W + +A E Sbjct: 24 NFIGGKFVPPVDGEYFDVISPVDGQVFTKVARGKAADIELALDAAHKAFPA-WSRTSATE 82 Query: 73 RIAVLRKVGDLILERKEELSVLESLDTGKPTWLSGSIDIPRAAYNFHFFSDYIRTITNEA 132 R +L K+ D I + E L+ +E++D GKP + + D+ +F +F+ IR Sbjct: 83 RSNILLKIADRIENKLEYLAAVETIDNGKPVRETINADLALVVDHFRYFAGVIRAEEGSI 142 Query: 133 TQMDDVALNYAIRRPVGVIGLINPWNLPLLLMTWKLAPALAAGNTVVMKPAELTPMTATV 192 ++D ++ ++ P+G++G I PWN P+L+ TWK+APALAAG ++KPAE TP + + Sbjct: 143 AELDQHTVSVNVKEPIGIVGQIIPWNFPMLMATWKMAPALAAGCCTIVKPAEQTPASIMI 202 Query: 193 LAEICRDAGVPDGVVNLVHGFGPNSAGAALTEHPDVNAISFTGETTTGKIIMASAAKTLK 252 L E+ D +P GV+N+V+GFGP AG L + P ++ ++FTGETTTG++IM A++ L Sbjct: 203 LMEVIGDL-LPAGVLNVVNGFGP-EAGKPLAQSPRLDKVAFTGETTTGRLIMQYASENLN 260 Query: 253 RLSYELGGKNPNVIFA------DSNLDEVIETTMKSSFINQGEVCLCGSRIYVERPAYEA 306 ++ ELGGK+PNV F D LD+ +E + + +NQGEVC C SRI V Y+A Sbjct: 261 PVTMELGGKSPNVFFPSVMDADDEFLDKCLEGAVMFA-LNQGEVCTCPSRILVHEKIYDA 319 Query: 307 FLEKFVAKTKELVVGDPFDAKTKVGALISDEHYERVTGYIKLAVEEGGTILTGG---KRP 363 F+EK +A+ + + +G P D T +GA S + +E++ YI + +EG +LTGG K Sbjct: 320 FMEKVIARAEAIQMGHPLDKTTMMGAQASKDQFEKILSYIDIGKQEGAEVLTGGEVAKLN 379 Query: 364 EGLEKGYFLEPTIITGLTRDCRVVKEEIFGPVVTVIPFDTEEEVLEQINDTHYGLSASVW 423 GLE GY+++PT++ G + RV +EEIFGPV +V F EE + NDT YGL A VW Sbjct: 380 SGLENGYYVKPTLLKGHNK-MRVFQEEIFGPVCSVATFKDVEEAISISNDTLYGLGAGVW 438 Query: 424 TNDLRRAHRVAGQIEAGIVWVNTWFLRDLRTPFGGMKQSGIGREGGLHSFEFYSELTNIC 483 T D A++V I+AG VWVN + PFGG K+SG GRE L Y + N+ Sbjct: 439 TRDAHEAYQVPRAIKAGRVWVNCYHAYPAHAPFGGYKKSGFGRETHLMMLNHYRQNKNML 498 Query: 484 I 484 I Sbjct: 499 I 499 Lambda K H 0.318 0.136 0.404 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 628 Number of extensions: 35 Number of successful extensions: 7 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 486 Length of database: 509 Length adjustment: 34 Effective length of query: 452 Effective length of database: 475 Effective search space: 214700 Effective search space used: 214700 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.3 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.7 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory