Align isocitrate dehydrogenase (NADP+) (EC 1.1.1.42) (characterized)
to candidate Echvi_4068 Echvi_4068 isocitrate dehydrogenase
Query= BRENDA::P33197 (496 letters) >FitnessBrowser__Cola:Echvi_4068 Length = 487 Score = 365 bits (937), Expect = e-105 Identities = 213/495 (43%), Positives = 303/495 (61%), Gaps = 29/495 (5%) Query: 19 RKLITVIPGDGIGPECVEATLKVLEAAKAPLAYEVREAGASVFRRGIASGVPQETIESIR 78 ++ ITV GDGIGPE ++ATL++LEAA A + EV E G V+ +GI+SG+ + +S+R Sbjct: 4 KRKITVAYGDGIGPEIMKATLEILEAAGAQIEPEVIEIGEQVYLKGISSGIEPKAWDSLR 63 Query: 79 KTRVVLKGPLETPVGYGEKSANVTLRKLFETYANVRPVREF-PNVPTPYAGRGIDLVVVR 137 +T++ LK P+ TP G G KS NVT RK YANVRP + + P + T + D+V+VR Sbjct: 64 ETKIFLKSPITTPQGGGFKSLNVTTRKTLGLYANVRPCKAYSPYIRTHFPET--DMVIVR 121 Query: 138 ENVEDLYAGIEHMQTPSVAQTLKLISWKGSEKIVRFAFELARAEGRKKVHCATKSNIMKL 197 EN EDLYAGIEH QT V Q LKLIS GSEKI+R+AFE A+ RKKV C TK NIMKL Sbjct: 122 ENEEDLYAGIEHRQTDDVYQCLKLISRPGSEKIIRYAFEYAKKYNRKKVTCMTKDNIMKL 181 Query: 198 AEGTLKRAFEQVAQEYPDIEAVHIIVDNAAHQLVKRPEQFEVIVTTNMNGDILSDLTSGL 257 A+G + F VA+EYP+IEA H I+D + +PE F+VIVT N+ GDI+SD+ + + Sbjct: 182 ADGLFHKVFNDVAKEYPEIEADHKIIDIGTALIADKPEMFDVIVTLNLYGDIISDVAAQI 241 Query: 258 IGGLGFAPSANIGNEVAIFEAVHGSAPKYAGKNVINPTAVLLSAVMMLRYLEEFATADLI 317 G +G S+N+G +VA+FEA+HGSAP AG+N+ NP+ +L A+MML ++ + A+ + Sbjct: 242 TGSVGLGGSSNVGEDVAMFEAIHGSAPDIAGQNIANPSGLLNGAIMMLVHIGQPEVAEKV 301 Query: 318 ENALLYTLEEGRVLTGDVVGYDRGAK-----TTEYTEAIIQNLGKTPRKTQVRGYKPFRL 372 NA + TLE+G + TGD+ Y G T E+ +A+I LG+ P K P Sbjct: 302 SNAWMKTLEDG-IHTGDI--YQEGVSSQLVGTKEFAQAVIDRLGQKPEK-----MVPAEF 353 Query: 373 PQVDGA--------IAPIVPRSRRVVGVDVFV---ETNLLPEALGKALEDLAAGTPFRLK 421 + DGA +A P + ++G+DVF+ E + +G L + A +++ Sbjct: 354 KKGDGADDNMGAIKLADRKPCKKDLIGLDVFIDWKENDRDANVIGDKLRAVDA-DGLKMQ 412 Query: 422 MISNRGTQVYPPTGGLTDLVDHYRCRFLYTGEGEAKDPEILDLVSRVAS-RFRWMHLEKL 480 +I+NRG +VYP T DH+R RF + ++LD++ +V F ++ E L Sbjct: 413 LITNRGVKVYPDGMKETFCSDHWRVRFFNADQSTITHGQVLDVLKQVEDLGFDFIKTENL 472 Query: 481 QEFDGEPGFTKAQGE 495 FDGE GF+ AQGE Sbjct: 473 YTFDGERGFSLAQGE 487 Lambda K H 0.317 0.136 0.390 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 639 Number of extensions: 39 Number of successful extensions: 5 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 496 Length of database: 487 Length adjustment: 34 Effective length of query: 462 Effective length of database: 453 Effective search space: 209286 Effective search space used: 209286 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.3 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.7 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory