Align Propionyl-CoA carboxylase, biotin carboxylase and biotin-carboxyl carrier subunit; PCC; EC 6.4.1.3; EC 6.3.4.14 (characterized)
to candidate Echvi_0191 Echvi_0191 acetyl-CoA carboxylase, biotin carboxylase subunit
Query= SwissProt::I3R7G3 (601 letters) >FitnessBrowser__Cola:Echvi_0191 Length = 449 Score = 447 bits (1150), Expect = e-130 Identities = 223/442 (50%), Positives = 315/442 (71%), Gaps = 3/442 (0%) Query: 1 MFSKVLVANRGEIAVRVMRACEELGVRTVAVYSEADKHGGHVRYADEAYNIGPARAADSY 60 MF+K+L+ANRGEIA+R++R C+E+G++TVAVYS ADK HVR+ADEA IG A + +SY Sbjct: 1 MFNKILIANRGEIALRIIRTCKEMGIKTVAVYSTADKDSLHVRFADEAVCIGAAPSRESY 60 Query: 61 LDHESVIEAARKADADAIHPGYGFLAENAEFARKVEDSEFTWVGPSADAMERLGEKTKAR 120 L+ VI AA +ADAIHPGYGFL+ENAEF++ E+ ++G S++ ++++G+K A+ Sbjct: 61 LNIPRVIAAAEITNADAIHPGYGFLSENAEFSKICEEYNIKFIGASSEMIDKMGDKATAK 120 Query: 121 SLMQDADVPVVPGTTEPADSAEDVKAVADDYGYPVAIKAEGGGGGRGLKVVHSEDEVDGQ 180 + M+ A VP +PG+ DS E +A++ GYPV +KA GGGGRG+++V E E Sbjct: 121 ATMKAAGVPTIPGSEGLLDSIEQGIKIANEMGYPVILKATAGGGGRGMRIVREEKEFKKA 180 Query: 181 FETAKREGEAYFDNASVYVEKYLEAPRHIEVQILADEHGNVRHLGERDCSLQRRHQKVIE 240 ++ A++E A F N +Y+EK++E PRHIE+Q++ D G HL ERDCS+QRRHQK++E Sbjct: 181 WDDARQESGAAFGNDGLYLEKFVEEPRHIEIQVVGDNTGKACHLSERDCSIQRRHQKLVE 240 Query: 241 EAPSPALSEDLRERIGEAARRGVRAAEYTNAGTVEFLVE-DGEFYFMEVNTRIQVEHTVT 299 E PSP ++++LR+ +G+AA +G A Y AGT+EFLV+ FYFME+NTRIQVEH +T Sbjct: 241 ETPSPFITDELRDAMGKAAIKGAEAIGYEGAGTIEFLVDKHRNFYFMEMNTRIQVEHPIT 300 Query: 300 EEVTGLDVVKWQLRVAAGEELDFSQDDVEIEGHSMEFRINAEAPEKEFAPATGTLSTYDP 359 EEVT D++K Q++VAAG + S + + ++ME RINAE P F P+ G ++ Sbjct: 301 EEVTDYDLIKEQIKVAAG--IPISGQNYYPKLYAMECRINAEDPANGFRPSPGKINNLHL 358 Query: 360 PGGIGIRMDDAVRQGDEIGGDYDSMIAKLIVTGSDREEVLVRAERALNEFDIEGLRTVIP 419 PGG G+R+D V G I +YDSMIAKLIV+G REEV+VR +RAL EF I+G++T IP Sbjct: 359 PGGRGVRVDSHVYAGYIIPPNYDSMIAKLIVSGQSREEVIVRMKRALEEFVIDGIKTTIP 418 Query: 420 FHRLMLTDEAFREGSHTTKYLD 441 FH +L DE F+ G+ TTK+L+ Sbjct: 419 FHIALLEDEQFKAGNFTTKFLE 440 Lambda K H 0.312 0.132 0.371 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 612 Number of extensions: 21 Number of successful extensions: 3 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 601 Length of database: 449 Length adjustment: 35 Effective length of query: 566 Effective length of database: 414 Effective search space: 234324 Effective search space used: 234324 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.2 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 42 (21.8 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory