Align Propionyl-CoA carboxylase biotin-containing subunit (EC 6.4.1.3) (characterized)
to candidate Echvi_3962 Echvi_3962 Acetyl/propionyl-CoA carboxylase, alpha subunit
Query= reanno::Dino:3607308 (681 letters) >lcl|FitnessBrowser__Cola:Echvi_3962 Echvi_3962 Acetyl/propionyl-CoA carboxylase, alpha subunit Length = 499 Score = 481 bits (1238), Expect = e-140 Identities = 248/507 (48%), Positives = 336/507 (66%), Gaps = 20/507 (3%) Query: 3 KKILIANRGEIACRVIKTARKMGIQTVAIYSDADRNALHVRMADEAVHIGPSPANQSYIV 62 +KIL+ANRGEIA R+++T R+MG+++VA+YS+ D+NA HV ADE+ +GP+P+++SY++ Sbjct: 5 RKILVANRGEIALRIMRTIREMGLKSVAVYSEVDKNAPHVLYADESYCLGPAPSHKSYLL 64 Query: 63 IDKVMDAIRQTGAEAVHPGYGFLSENKLFAEALEKEGVAFIGPPANAIEAMGDKITSKKI 122 +++++A + GA+A+HPGYGFLSEN FA+ + G+ FIGP +IE MGDK+ +KK Sbjct: 65 GERIIEACQALGADAIHPGYGFLSENTAFAKKVADAGLIFIGPSPESIEIMGDKLAAKKA 124 Query: 123 AQEANVSTVPGYMGLIADADEAVKISGEIGYPVMIKASAGGGGKGMRIAWNDAEAREGFQ 182 ++ VPG I D EA K + EIGYP++IKASAGGGGKGMRI ++ E E + Sbjct: 125 VSHYDIPMVPGTDHAILDIQEAKKTAVEIGYPILIKASAGGGGKGMRIVQDEGEFEEQMK 184 Query: 183 SSKNEAANSFGDDRIFIEKFVTQPRHIEIQVLADTHGNCIYLGERECSIQRRNQKVVEEA 242 + +EA ++FGD +FIEK++T PRHIEIQ+LAD HGN ++L ERECS+QRR+QKV+EEA Sbjct: 185 RAVSEAQSAFGDGAVFIEKYITSPRHIEIQILADQHGNYLHLFERECSVQRRHQKVIEEA 244 Query: 243 PSPFLDEATRKAMGEQSCALAQAVGYASAGTVEFIVDGDRNFYFLEMNTRLQVEHPVTEL 302 PS +++ RKAMG+ + +A+A Y AGTVEFIVD NFYFLEMNTRLQVEHPVTE+ Sbjct: 245 PSAVVNQEMRKAMGQAAIDVAKACQYYGAGTVEFIVDEALNFYFLEMNTRLQVEHPVTEM 304 Query: 303 ITGVDLVEQMIRVAAGEKLPMTQDDVTLTGWAIENRLYAEDPYRNFLPSIGRLTRYRPPV 362 ITG DLV + I +A G+ L QDD+T+ G AIE R+YAEDP NFLP IG+L YR Sbjct: 305 ITGKDLVREQIFIAEGQALSFAQDDLTILGHAIETRVYAEDPTNNFLPDIGKLATYR--- 361 Query: 363 EVAAGPLEANGKWHGDAPSGPTAVRNDTGVYEGGEISMYYDPMIAKLCTWGPDRPAAIEA 422 P GP +R D G EG EI +YYDPMIAKL T+ DRP AI+ Sbjct: 362 ----------------LPQGP-GIRVDDGFREGMEIPIYYDPMIAKLVTFEEDRPKAIQK 404 Query: 423 MRNALDGFEVEGIGHNLPFVAAVMDHPVFIKGEMTTAFIKEQYPDGFEGVTLGAADLTRL 482 M A+D + + GI L F VM HP F GE T F+++ + + L Sbjct: 405 MVRAIDDYHITGISTTLSFARFVMLHPAFQSGEFDTKFVEKHFAPSKLAENFSEEEEEIL 464 Query: 483 AAAAAAMFRVAEIRRTRISGTLDNHER 509 A AA + A+ T ++G N+ + Sbjct: 465 ATIAAYLLPNAKQPSTNVNGQDQNNSK 491 Lambda K H 0.318 0.134 0.392 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 840 Number of extensions: 38 Number of successful extensions: 2 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 681 Length of database: 499 Length adjustment: 36 Effective length of query: 645 Effective length of database: 463 Effective search space: 298635 Effective search space used: 298635 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.3 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.7 bits) S2: 53 (25.0 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory