Align Dihydrolipoyl dehydrogenase; EC 1.8.1.4; Dihydrolipoamide dehydrogenase; E3 component of branched-chain alpha-keto acid dehydrogenase complex; LPD-Val (uncharacterized)
to candidate Echvi_0722 Echvi_0722 Pyruvate/2-oxoglutarate dehydrogenase complex, dihydrolipoamide dehydrogenase (E3) component, and related enzymes
Query= curated2:P54533 (474 letters) >lcl|FitnessBrowser__Cola:Echvi_0722 Echvi_0722 Pyruvate/2-oxoglutarate dehydrogenase complex, dihydrolipoamide dehydrogenase (E3) component, and related enzymes Length = 458 Score = 238 bits (608), Expect = 2e-67 Identities = 146/459 (31%), Positives = 238/459 (51%), Gaps = 15/459 (3%) Query: 5 YDVVILGGGTGGYVAAIRAAQLGLKTAVVEKEKLGGTCLHKGCIPSKALLRSAEVYRTAR 64 YD ++LG G G A + ++LGL A++EK +GGTC++ GC P+K ++ SA V Sbjct: 4 YDAIVLGAGQSGMPLAKKISKLGLSVALIEKRVIGGTCINDGCSPTKTMVSSARVAHIVS 63 Query: 65 EADQFGVETAGVSLNFEKVQQRKQAVVDKLAAGVNHLMKKGK-IDVYTGYGRILGPSIFS 123 A FG ++ V++RK +V+ G ++K + ID+ ++G + F Sbjct: 64 RAADFGTILPHYRIDQRIVKKRKDHIVELFRGGAEKSLRKNESIDI------LMGSAAFK 117 Query: 124 PLPGTISVERGNGEENDMLIPKQVIIATGSRPRMLPGLE-VDGKSVLTSDEALQMEELPQ 182 TI + GE + + ++ I TGS PR +P +E + LTS +++EE P+ Sbjct: 118 D-SRTIQITSDTGEIS-FISGTKIFINTGSEPR-IPEIEGLADTPYLTSTTIMELEETPE 174 Query: 183 SIIIVGGGVIGIEWASMLHDFGVKVTVIEYADRILPTEDLEISKEMESLLKKKGIQFITG 242 ++I+GGG IG+E+A M FG KVT+I+ A+R++ ED ++ KE+ + ++GI + Sbjct: 175 HLLIMGGGYIGLEFAQMFSRFGSKVTIIDRAERLVHKEDEDVCKEISQIFSEEGIDTLFN 234 Query: 243 AKVLPDTMTKTSDDISIQAEKDGETVTYSAEKMLVSIGRQANIEGIGLENTDI-VTENGM 301 A+V D + E + +LV+ GR + +GLENT + +T+ G Sbjct: 235 AEV---RKVSYQDGFKLTTETPKGLLDIKGSHLLVATGRIPSSAHLGLENTRVKLTDKGF 291 Query: 302 ISVNESCQTKESHIYAIGDVIGGLQLAHVASHEGIIAVEHFAGLNPHPLDPTLVPKCIYS 361 I ++ QT E HIYA+GDV G H+A H+ IA +H N LVP C++ Sbjct: 292 IQTDDFLQTSEKHIYALGDVAGSAPFTHIAYHDAHIAFQHAFKENAVSKHERLVPYCVFI 351 Query: 362 SPEAASVGLTEDEAKANGHNVKIGKFPFMAIGKALVYGESDGFVKIVADRDTDDILGVHM 421 P+ +GL E EA+A G K GKF G+ L E+ GF K+ D ++ ILG + Sbjct: 352 DPQLGRIGLNEQEAQAKGIPYKTGKFLMKHAGRTLEVDETRGFFKVQVDPESKKILGATI 411 Query: 422 IGPHVTDMISEAGLAKVLDATPWEVGQTIHPHPTLSEAI 460 + ++++ +A V T + HPTL+E++ Sbjct: 412 LSLDGGEILATLQMAMVGGVTYDTIATLPIAHPTLAESL 450 Lambda K H 0.315 0.135 0.382 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 482 Number of extensions: 20 Number of successful extensions: 4 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 474 Length of database: 458 Length adjustment: 33 Effective length of query: 441 Effective length of database: 425 Effective search space: 187425 Effective search space used: 187425 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.3 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 42 (22.0 bits) S2: 51 (24.3 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory