Align α,α-trehalase / α-glucosidase (TTC0107) (EC 3.2.1.20|3.2.1.28) (characterized)
to candidate Echvi_2850 Echvi_2850 Glycosidases
Query= CAZy::AAS80455.1 (528 letters) >FitnessBrowser__Cola:Echvi_2850 Length = 519 Score = 221 bits (564), Expect = 4e-62 Identities = 164/521 (31%), Positives = 255/521 (48%), Gaps = 90/521 (17%) Query: 2 WWKEA-VIYQVYPRSFQDTNGDGVGDLEGVRRRLPYLKSLGVDALWLSPFYKSPMKDFGY 60 +W EA + Y+++ +SF DT+GDG+GD+ GV ++L +++ LG +A+W P SP Y Sbjct: 33 YWPEAGITYEIFIQSFYDTDGDGIGDINGVTKKLDHVQELGANAIWFMPLMPSPSYH-KY 91 Query: 61 DVADYCDVDPVFGTLQDFDRLLEEAHALGLKVLVDLVPNHTSSEHPWFLESRASRNSPKR 120 DV DY + P +GT+ DF ++L+EAH +KV++D++ NHTS EHPWF E++ R++P R Sbjct: 92 DVTDYKAIHPDYGTMDDFKQMLDEAHKRDIKVVIDMIINHTSDEHPWFQEAKKGRDNPYR 151 Query: 121 DWYIWKDPAPDGGPPNNWQSFFGGPAWTLDEAT-------GQ---YYLHQFLPEQPDLNW 170 D+Y+W + Q + TLD GQ YY F + PDLN+ Sbjct: 152 DYYVW-------AQYDTIQDYLDKKVVTLDSDNIRQWHDPGQGDDYYYGFFTGDMPDLNF 204 Query: 171 RNPEVREAIYEVMRFWLRR-GVDGFRVDVLWLLAEDLLFRDEPGNPDWRPGMWDRGRHLH 229 NP+VRE IYE+ R+WL GVDGFR+D + D DR H Sbjct: 205 DNPKVREEIYEIGRYWLAEVGVDGFRLDAAKHIYPD-----------------DRAADSH 247 Query: 230 IFTEDQPETYAYVREMRQVLDEFSEPGRERVMVGEIYLPYPQLVRYYQAGCHLPFNFHLI 289 F E+ + EM +V + +VGE+Y ++V Y G FNF Sbjct: 248 EFWEE------FRAEMEKVKPDV-------YLVGEVY-DMKEVVAPYLTGLRALFNFDFH 293 Query: 290 FRGLPDWRPENLARIVEEYESLLTRWDW------PNWVLGNHDQPRLASRLGEAQARV-- 341 + L ++ E+ + ++ +L ++ + NHDQPRL + LG+++ ++ Sbjct: 294 YTLLEAYKKEDGMLLAKKQHDILAFYNGITDDFIDATISSNHDQPRLLNELGKSKDKLKQ 353 Query: 342 AAMLLFTLRGTPTWYYGDEIGMKNGEIPPEKVQDPAALRQKDRLGEHNLPPGRDPERTPM 401 A +L T+ G P YYG+EIGM G+ P +++P + +D RT Sbjct: 354 AIAILMTMPGAPYIYYGEEIGML-GKKPDPNIREPFLWDVAE----------QDEGRT-- 400 Query: 402 QWDDTPFAGFSTVEPWLPVNPDYKTRNVAAQEQDPRSMLHLVRRLIALRK-DPDLLYGAY 460 +W F+ +TV P +A Q++D S + +R+I LR P L G+ Sbjct: 401 KWITPAFSTDNTVTP------------LAIQKEDADSYFNHYKRVIQLRNTHPALAIGSL 448 Query: 461 R--TYRAREGVYAYLRGEG---WLVALNLTEKEKALELPRG 496 + + V AY R G V NL +K + LP+G Sbjct: 449 ELPAEKYPKAVMAYQRKTGEQELYVFHNLGKKSVEIPLPQG 489 Lambda K H 0.321 0.141 0.466 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 863 Number of extensions: 55 Number of successful extensions: 5 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 528 Length of database: 519 Length adjustment: 35 Effective length of query: 493 Effective length of database: 484 Effective search space: 238612 Effective search space used: 238612 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.4 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.8 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory