Align α-glucosidase (AG31A;BspAG31A) (EC 3.2.1.20) (characterized)
to candidate Echvi_4038 Echvi_4038 Alpha-glucosidases, family 31 of glycosyl hydrolases
Query= CAZy::BAQ19546.1 (790 letters) >FitnessBrowser__Cola:Echvi_4038 Length = 955 Score = 264 bits (674), Expect = 2e-74 Identities = 176/535 (32%), Positives = 273/535 (51%), Gaps = 49/535 (9%) Query: 220 YSFSAEGGQ-IDYYTLAGPTPKAVLEQYTFLTGRAPIPPKWAIGYHQSRYSYKTEQEVRL 278 Y+F +E G+ +DYY +AG ++ Y LTG+A I PKWA+G+ QSR YKT++E+ Sbjct: 367 YAFRSEAGKMLDYYFVAGQDMDELISGYRQLTGKAQIMPKWAMGFWQSRERYKTQEELLS 426 Query: 279 LAKTFKEKEIPLDAIHLDIHYM--DGYRVFTFDRSRFPKPEKMVEEL-KQEGVHIVSIVD 335 ++++ IPLD I D Y D + FD +RFP P M++++ Q HI+ V Sbjct: 427 TVAEYRKRHIPLDNIVQDWSYWPEDAWGSHDFDPARFPDPVGMIDQVHDQYHAHIMISVW 486 Query: 336 PGVKQDPEYH--------IYKEGIQNDYFCKYLEGEVFFGDVWPGRSAFPDFTNEKVRE- 386 P + E++ +YK+ I N EG + S F D N RE Sbjct: 487 PKFYEGIEHYKQFDEKGWLYKQNILNRQRDWIGEGYI---------STFYDAFNPGAREL 537 Query: 387 WWGQKHAYYANMGIEGIWNDMNEPSVFNETKTMDMNVVHENDGDPRTHRELHNIYGMMMG 446 +W Q + GI+ W D EP V + + N T E N Y ++ Sbjct: 538 FWKQINEKLYQKGIDAWWLDATEPDVLSNASIQHRKTL-MNPTALGTATEYFNGYPLVNA 596 Query: 447 KATYEGMKKQLGNKRPFLLTRAGFAGVQRY-SAVWTGDNRSFWEHLELSLPMCMNLGVSG 505 K Y G + + R F+LTR+ F G+QRY +A W+GD + ++ LE +P +N +SG Sbjct: 597 KGIYHGQRATNPDDRVFILTRSAFPGIQRYGAATWSGDISARFDELEQQIPAGLNFSLSG 656 Query: 506 VPFVGPDVGGF-------AHDSNGQLL-------TRWTQVGAFYPFFRNHSVIESVRQEP 551 +P+ D+GGF D G+ L TRW Q G F P +R+H + +E Sbjct: 657 LPYWTTDIGGFFVEDKYDRPDPKGEALEEWRELNTRWYQYGTFTPLYRSHG--QYPYREV 714 Query: 552 WAFGEE----YEQIIKRYIQLRYQWLPHLYSLFAEANETGVPIMRPLFLEYPDDPHVMNL 607 + E Y I+ Y +LRY+ +P++YSL + + IMRPL +++ DP V + Sbjct: 715 FNIAPEGHPAYRSIV-FYNKLRYRLMPYIYSLTGKVHHDDYTIMRPLIMDFDHDPRVGQI 773 Query: 608 ATQFMVGDNVIVAPIMRPDTYHRVIYLP-EGNWVDYWNEEVLEGGKHHLVEAPLDKLPIY 666 QFM G +++V P+ + +R IY P E W D E GG +EAP DK+P++ Sbjct: 774 KDQFMFGPSILVNPVYHYEATNRDIYFPKETGWYDLLTGEYQAGGVEKNIEAPYDKIPLF 833 Query: 667 VKQGTMLVHG-DIKSSTAIPDEKLTLHIYAQTSGEASYSLYEDDGMSFDYEQGSY 720 VK G+++ G I+ + P +++TL++YA +G + LYED G +++YEQG + Sbjct: 834 VKAGSIIPFGPKIEYTDEKPADEITLYVYAGQNG--YFELYEDQGSNYEYEQGQF 886 Lambda K H 0.320 0.138 0.428 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 2216 Number of extensions: 154 Number of successful extensions: 9 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 790 Length of database: 955 Length adjustment: 42 Effective length of query: 748 Effective length of database: 913 Effective search space: 682924 Effective search space used: 682924 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.4 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.8 bits) S2: 56 (26.2 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory