GapMind for catabolism of small carbon sources

 

Alignments for a candidate for davT in Echinicola vietnamensis KMM 6221, DSM 17526

Align 5-aminovalerate transaminase (EC 2.6.1.48) (characterized)
to candidate Echvi_2919 Echvi_2919 Ornithine/acetylornithine aminotransferase

Query= BRENDA::Q9I6M4
         (426 letters)



>FitnessBrowser__Cola:Echvi_2919
          Length = 393

 Score =  220 bits (561), Expect = 5e-62
 Identities = 148/406 (36%), Positives = 215/406 (52%), Gaps = 47/406 (11%)

Query: 29  ERAENSTVWDVEGREYIDFAGGIAVLNTGHLHPKVIAAVQEQLGKLSHTCFQVLAYEPYI 88
           E+AE   ++  +G +YID   GI V N GH HPKV+ A+Q+QL K  H    ++ Y  Y+
Sbjct: 24  EKAEGIYMYGPKGEKYIDLISGIGVSNVGHRHPKVLKAIQDQLDKYMH----LMVYGEYV 79

Query: 89  ELAE-EIAKRVPGDFPKK---TLLVTSGSEAVENAVKIARAATGRAGVIAFTGAYHGRTM 144
           +  + ++AK +    PKK     LV SGSEAVE A+K+A+  TGR  +++   AYHG + 
Sbjct: 80  QSPQTQLAKALTDTLPKKLDNVYLVNSGSEAVEGALKLAKRYTGRREILSCVNAYHGSSH 139

Query: 145 MTLGLTGKVVPYSAGMGLMPGGIFRALAPCELHGVSEDDSIASIERIFKNDAQPQDIAAI 204
             L + G  +   A   L+PG   R L        +E D +  I          ++ AAI
Sbjct: 140 GALSVGGNEIFKRAYRPLLPG--IRHL------DFNEPDQLDQIT---------EETAAI 182

Query: 205 IIEPVQGEGGFYVNSKSFMQRLRALCDQHGILLIADEVQTGAGRTGTFFATEQLGIVPDL 264
           ++E VQGE G  V +K + + LR  CD+ G LLI DE+Q G GRTG F+A +   IVPD+
Sbjct: 183 MVETVQGEAGIRVGTKEYFKALRHRCDETGTLLILDEIQAGFGRTGKFWAFQHYDIVPDI 242

Query: 265 TTFAKSVGGGFPISGVAGKAEIMDAIAPGGLGG---TYAGSPIACAAALAVLKVFEEEKL 321
              AK +GGG PI        IM       L G   T+ G P++CAAALA + +  +EKL
Sbjct: 243 VVCAKGMGGGMPIGAFIAPQSIMSVFKNNPLLGHITTFGGHPVSCAAALATIDILRDEKL 302

Query: 322 LERSQAVGERLKAGLREIQAKHKVIGDVRGLGSMVAIELFEGGDTHKPAAELVSKIVVRA 381
           ++  +      KA L +    H  I ++R  G M+A++ FE       A E++  I+ RA
Sbjct: 303 IQHVER-----KANLFKKHLNHPKIQEIRNKGLMMAVK-FE-------AFEVLKPIIDRA 349

Query: 382 REKGLI---LLSCGTYYNVIRFLMPVTIPDAQLEKGLAILAECFDE 424
            E G+I    L C    + +R   P+TI D ++EK  AI+ +  DE
Sbjct: 350 IELGIITDWFLFC---EDSMRIAPPLTITDEEIEKACAIILQSIDE 392


Lambda     K      H
   0.319    0.137    0.393 

Gapped
Lambda     K      H
   0.267   0.0410    0.140 


Matrix: BLOSUM62
Gap Penalties: Existence: 11, Extension: 1
Number of Sequences: 1
Number of Hits to DB: 384
Number of extensions: 24
Number of successful extensions: 5
Number of sequences better than 1.0e-02: 1
Number of HSP's gapped: 1
Number of HSP's successfully gapped: 1
Length of query: 426
Length of database: 393
Length adjustment: 31
Effective length of query: 395
Effective length of database: 362
Effective search space:   142990
Effective search space used:   142990
Neighboring words threshold: 11
Window for multiple hits: 40
X1: 16 ( 7.4 bits)
X2: 38 (14.6 bits)
X3: 64 (24.7 bits)
S1: 41 (21.8 bits)
S2: 50 (23.9 bits)

This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.

Links

Downloads

Related tools

About GapMind

Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.

A candidate for a step is "high confidence" if either:

where "other" refers to the best ublast hit to a sequence that is not annotated as performing this step (and is not "ignored").

Otherwise, a candidate is "medium confidence" if either:

Other blast hits with at least 50% coverage are "low confidence."

Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:

GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).

For more information, see:

If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know

by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory