GapMind for catabolism of small carbon sources

 

Alignments for a candidate for gabT in Echinicola vietnamensis KMM 6221, DSM 17526

Align 4-aminobutyrate-2-oxoglutarate transaminase (EC 2.6.1.19) (characterized)
to candidate Echvi_2919 Echvi_2919 Ornithine/acetylornithine aminotransferase

Query= BRENDA::Q0K2K2
         (423 letters)



>FitnessBrowser__Cola:Echvi_2919
          Length = 393

 Score =  201 bits (512), Expect = 2e-56
 Identities = 131/406 (32%), Positives = 213/406 (52%), Gaps = 48/406 (11%)

Query: 29  DRAENATLWDVEGRAYTDFAAGIAVLNTGHRHPRVMQAIAAQLERFTHTAYQIVPYQGYV 88
           ++AE   ++  +G  Y D  +GI V N GHRHP+V++AI  QL+++ H    ++ Y  YV
Sbjct: 24  EKAEGIYMYGPKGEKYIDLISGIGVSNVGHRHPKVLKAIQDQLDKYMH----LMVYGEYV 79

Query: 89  T-----LAERINALVPIQGLNKTALFTTGAEAVENAIKIARAHTGRPGVIAFSGAFHGRT 143
                 LA+ +   +P + L+   L  +G+EAVE A+K+A+ +TGR  +++   A+HG +
Sbjct: 80  QSPQTQLAKALTDTLP-KKLDNVYLVNSGSEAVEGALKLAKRYTGRREILSCVNAYHGSS 138

Query: 144 LLGMALTGKVAPYKIGFGPFPSDIYHAPF--PSALHGVSTERALQALEGLFKTDIDPARV 201
              +++ G    +K  + P    I H  F  P  L  ++ E                   
Sbjct: 139 HGALSVGGNEI-FKRAYRPLLPGIRHLDFNEPDQLDQITEE------------------T 179

Query: 202 AAIIVEPVQGEGGFQAAPADFMRGLRAVCDQHGIVLIADEVQTGFGRTGKMFAMSHHDVE 261
           AAI+VE VQGE G +    ++ + LR  CD+ G +LI DE+Q GFGRTGK +A  H+D+ 
Sbjct: 180 AAIMVETVQGEAGIRVGTKEYFKALRHRCDETGTLLILDEIQAGFGRTGKFWAFQHYDIV 239

Query: 262 PDLITMAKSLAGGMPLSAVSGRAAIMDA----PLPGGLGGTYAGNPLAVAAAHAVIDVIE 317
           PD++  AK + GGMP+ A     +IM      PL G +  T+ G+P++ AAA A ID++ 
Sbjct: 240 PDIVVCAKGMGGGMPIGAFIAPQSIMSVFKNNPLLGHI-TTFGGHPVSCAAALATIDILR 298

Query: 318 EEKLCERSASLGQQLREHLLAQRKHCPAMAEVRGLGSMVAAEFCDPATGQPSAEHAKRVQ 377
           +EKL +         ++HL     + P + E+R  G M+A +F        + E  K + 
Sbjct: 299 DEKLIQHVERKANLFKKHL-----NHPKIQEIRNKGLMMAVKF-------EAFEVLKPII 346

Query: 378 TRALEAGLVLLTCGTYGNVIRFLYPLTIPQAQFDAALAVLTQALAE 423
            RA+E G++        + +R   PLTI   + + A A++ Q++ E
Sbjct: 347 DRAIELGIITDWFLFCEDSMRIAPPLTITDEEIEKACAIILQSIDE 392


Lambda     K      H
   0.321    0.136    0.400 

Gapped
Lambda     K      H
   0.267   0.0410    0.140 


Matrix: BLOSUM62
Gap Penalties: Existence: 11, Extension: 1
Number of Sequences: 1
Number of Hits to DB: 358
Number of extensions: 25
Number of successful extensions: 4
Number of sequences better than 1.0e-02: 1
Number of HSP's gapped: 1
Number of HSP's successfully gapped: 1
Length of query: 423
Length of database: 393
Length adjustment: 31
Effective length of query: 392
Effective length of database: 362
Effective search space:   141904
Effective search space used:   141904
Neighboring words threshold: 11
Window for multiple hits: 40
X1: 16 ( 7.4 bits)
X2: 38 (14.6 bits)
X3: 64 (24.7 bits)
S1: 41 (21.9 bits)
S2: 50 (23.9 bits)

This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.

Links

Downloads

Related tools

About GapMind

Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.

A candidate for a step is "high confidence" if either:

where "other" refers to the best ublast hit to a sequence that is not annotated as performing this step (and is not "ignored").

Otherwise, a candidate is "medium confidence" if either:

Other blast hits with at least 50% coverage are "low confidence."

Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:

GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).

For more information, see:

If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know

by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory