Align Aldehyde dehydrogenase; Acetaldehyde dehydrogenase; EC 1.2.1.3 (characterized)
to candidate Echvi_0481 Echvi_0481 NAD-dependent aldehyde dehydrogenases
Query= SwissProt::A1B4L2 (508 letters) >lcl|FitnessBrowser__Cola:Echvi_0481 Echvi_0481 NAD-dependent aldehyde dehydrogenases Length = 509 Score = 699 bits (1805), Expect = 0.0 Identities = 333/504 (66%), Positives = 399/504 (79%) Query: 5 QTHPFRGVNALPFEERYDNFIGGEWVAPVSGRYFTNTTPITGAEIGQIARSEAGDIELAL 64 Q P ++ F+ YDNFIGG++V PV G YF +P+ G ++AR +A DIELAL Sbjct: 6 QEKPATMLDRPDFKPHYDNFIGGKFVPPVDGEYFDVISPVDGQVFTKVARGKAADIELAL 65 Query: 65 DAAHAAKEKWGATSPAERANIMLKIADRMERNLELLATAETWDNGKPIRETMAADLPLAI 124 DAAH A W TS ER+NI+LKIADR+E LE LA ET DNGKP+RET+ ADL L + Sbjct: 66 DAAHKAFPAWSRTSATERSNILLKIADRIENKLEYLAAVETIDNGKPVRETINADLALVV 125 Query: 125 DHFRYFAGVLRAQEGSISQIDDDTVAYHFHEPLGVVGQIIPWNFPLLMACWKLAPAIAAG 184 DHFRYFAGV+RA+EGSI+++D TV+ + EP+G+VGQIIPWNFP+LMA WK+APA+AAG Sbjct: 126 DHFRYFAGVIRAEEGSIAELDQHTVSVNVKEPIGIVGQIIPWNFPMLMATWKMAPALAAG 185 Query: 185 NCVVLKPAEQTPAGIMVWANLIGDLLPPGVLNIVNGFGLEAGKPLASSNRIAKIAFTGET 244 C ++KPAEQTPA IM+ +IGDLLP GVLN+VNGFG EAGKPLA S R+ K+AFTGET Sbjct: 186 CCTIVKPAEQTPASIMILMEVIGDLLPAGVLNVVNGFGPEAGKPLAQSPRLDKVAFTGET 245 Query: 245 TTGRLIMQYASENLIPVTLELGGKSPNIFFADVAREDDDFFDKALEGFTMFALNQGEVCT 304 TTGRLIMQYASENL PVT+ELGGKSPN+FF V DD+F DK LEG MFALNQGEVCT Sbjct: 246 TTGRLIMQYASENLNPVTMELGGKSPNVFFPSVMDADDEFLDKCLEGAVMFALNQGEVCT 305 Query: 305 CPSRVLIQESIYDKFMERAVQRVQAIKQGDPRESDTMIGAQASSEQKEKILSYLDIGKKE 364 CPSR+L+ E IYD FME+ + R +AI+ G P + TM+GAQAS +Q EKILSY+DIGK+E Sbjct: 306 CPSRILVHEKIYDAFMEKVIARAEAIQMGHPLDKTTMMGAQASKDQFEKILSYIDIGKQE 365 Query: 365 GAEVLTGGKAADLGGELSGGYYIEPTIFRGNNKMRIFQEEIFGPVVSVTTFKDQAEALEI 424 GAEVLTGG+ A L L GYY++PT+ +G+NKMR+FQEEIFGPV SV TFKD EA+ I Sbjct: 366 GAEVLTGGEVAKLNSGLENGYYVKPTLLKGHNKMRVFQEEIFGPVCSVATFKDVEEAISI 425 Query: 425 ANDTLYGLGAGVWSRDANTCYRMGRGIKAGRVWTNCYHAYPAHAAFGGYKQSGIGRETHK 484 +NDTLYGLGAGVW+RDA+ Y++ R IKAGRVW NCYHAYPAHA FGGYK+SG GRETH Sbjct: 426 SNDTLYGLGAGVWTRDAHEAYQVPRAIKAGRVWVNCYHAYPAHAPFGGYKKSGFGRETHL 485 Query: 485 MMLDHYQQTKNMLVSYSPKKLGFF 508 MML+HY+Q KNML+SY KLGFF Sbjct: 486 MMLNHYRQNKNMLISYDKNKLGFF 509 Lambda K H 0.319 0.136 0.411 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 831 Number of extensions: 28 Number of successful extensions: 1 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 508 Length of database: 509 Length adjustment: 34 Effective length of query: 474 Effective length of database: 475 Effective search space: 225150 Effective search space used: 225150 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.4 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.7 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory