Align Aldehyde dehydrogenase; EC 1.2.1.3 (characterized)
to candidate Echvi_1497 Echvi_1497 NAD-dependent aldehyde dehydrogenases
Query= SwissProt::P12693 (483 letters) >lcl|FitnessBrowser__Cola:Echvi_1497 Echvi_1497 NAD-dependent aldehyde dehydrogenases Length = 469 Score = 400 bits (1029), Expect = e-116 Identities = 213/446 (47%), Positives = 289/446 (64%), Gaps = 2/446 (0%) Query: 39 IAERIAALNLLKETIQRREPEIIAALAADFRKPASEVKLTEIFPVLQEINHAKRNLKDWM 98 ++ RI L LKE I+ + EI AL AD RKPA+EV +TE V+ EIN A + L W Sbjct: 21 LSSRIKKLEQLKEWIKSNQKEIEKALYADLRKPAAEVAVTETSFVVMEINAALKQLPKWT 80 Query: 99 KPRRVRAALSVAGTRAGLRYEPKGVCLIIAPWNYPFNLSFGPLVSALAAGNSVVIKPSEL 158 P +V + + GT+A L+ EPKG LII+PWNYPFNLS PLVSA+AAG S +KPSE Sbjct: 81 APTKVGQPIHMLGTQAYLQAEPKGAVLIISPWNYPFNLSVAPLVSAIAAGCSACLKPSEH 140 Query: 159 TPHTATLIGSIVREAFSVDLVAVVEGDAAVSQELLALPFDHIFFTGSPRVGKLVMEAASK 218 +PHT+ L+ +V E F+V+ V + EG V+ ELL PFDHIFFTGS VGK+VM+AA+K Sbjct: 141 SPHTSALLRRMVTELFAVEDVTIFEGGVPVTSELLEQPFDHIFFTGSTEVGKIVMKAAAK 200 Query: 219 TLASVTLELGGKSPTIIGPTANLPKAARNIVWGKFSNNGQTCIAPDHVFVHRCIAQKFNE 278 L SVTLELGGKSP II +L AA+ I GKF N+GQTCIAPD++FVH Q F E Sbjct: 201 NLTSVTLELGGKSPAIIDQGFDLEDAAKKIAIGKFINSGQTCIAPDYLFVHESQKQDFIE 260 Query: 279 ILVKEIVRVYGKDFAAQRRSADYCRIVNDQHFNRINKLLTDAKAKGAKILQGGQVDATER 338 L ++ R+Y + R+ DY RI++ H R+ +L DA+ KGA + GG+ ++ Sbjct: 261 TLKAQVNRMYNANGKGFDRNPDYGRIIHAPHIVRLQNMLKDAQTKGAHVEFGGKNSLDQQ 320 Query: 339 LVVPTVLSNVTAAMDINHEEIFGPLLPIIEYDDIDSVIKRVNDGDKPLALYVFSEDKQFV 398 + PTV+SNV+ AMD+ EEIFGP+LPII Y +D VI+ + KPLA+Y F+ D + + Sbjct: 321 FMEPTVVSNVSEAMDLMKEEIFGPILPIITYHQLDDVIQLIQLKPKPLAVYAFTTDDRII 380 Query: 399 NNIVARTSSGSVGVNLSVVHFLHPNLPFGGVNNSGIGSAHGVYGFRAFSHEKPVLIDKF- 457 + TSSG++ +N + FLH LPFGG+ SG+G +HG GF AFS+EK +L + Sbjct: 381 EQLSKNTSSGALVINDCAIQFLHSELPFGGIGASGMGRSHGHAGFLAFSNEKAILKQRTG 440 Query: 458 -SITHWLFPPYTKKVKQLIGITVKYL 482 ++ L+PPY K +I +K++ Sbjct: 441 KTLPKLLYPPYGLKTSGIIKAFMKWV 466 Lambda K H 0.320 0.136 0.395 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 506 Number of extensions: 20 Number of successful extensions: 1 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 483 Length of database: 469 Length adjustment: 33 Effective length of query: 450 Effective length of database: 436 Effective search space: 196200 Effective search space used: 196200 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.4 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.8 bits) S2: 51 (24.3 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory