Align Alpha-ketoglutaric semialdehyde dehydrogenase; alphaKGSA dehydrogenase; 2,5-dioxovalerate dehydrogenase; EC 1.2.1.26 (characterized)
to candidate Echvi_0481 Echvi_0481 NAD-dependent aldehyde dehydrogenases
Query= SwissProt::P42236 (488 letters) >FitnessBrowser__Cola:Echvi_0481 Length = 509 Score = 278 bits (710), Expect = 4e-79 Identities = 177/465 (38%), Positives = 254/465 (54%), Gaps = 20/465 (4%) Query: 10 YLNFINGEWVKSQSGDMVKVENPADVNDIVGYVQNSTAEDVERAVTAANEAKTAWRKLTG 69 Y NFI G++V G+ V +P D + V A D+E A+ AA++A AW + + Sbjct: 22 YDNFIGGKFVPPVDGEYFDVISPVD-GQVFTKVARGKAADIELALDAAHKAFPAWSRTSA 80 Query: 70 AERGQYLYKTADIMEQRLEEIAACATREMGKTLPEA-KGETARGIAILRYYAGEGMRKTG 128 ER L K AD +E +LE +AA T + GK + E + A + RY+AG + G Sbjct: 81 TERSNILLKIADRIENKLEYLAAVETIDNGKPVRETINADLALVVDHFRYFAGVIRAEEG 140 Query: 129 DVIPSTDKDALMFTTRVPLGVVGVISPWNFPVAIPIWKMAPALVYGNTVVIKPATETAVT 188 I D+ + + P+G+VG I PWNFP+ + WKMAPAL G ++KPA +T Sbjct: 141 S-IAELDQHTVSVNVKEPIGIVGQIIPWNFPMLMATWKMAPALAAGCCTIVKPAEQTP-- 197 Query: 189 CAKIIACFEEAG--LPAGVINLVTGPGSVVGQGLAEHDGVNAVTFTGSNQVGKIIGQAAL 246 A I+ E G LPAGV+N+V G G G+ LA+ ++ V FTG G++I Q A Sbjct: 198 -ASIMILMEVIGDLLPAGVLNVVNGFGPEAGKPLAQSPRLDKVAFTGETTTGRLIMQYAS 256 Query: 247 ARGAKYQLEMGGKNP------VIVADDADLEAAAEAVITGAFRSTGQKCTATSRVIVQSG 300 +E+GGK+P V+ ADD L+ E + A G+ CT SR++V Sbjct: 257 ENLNPVTMELGGKSPNVFFPSVMDADDEFLDKCLEGAVMFALNQ-GEVCTCPSRILVHEK 315 Query: 301 IYERFKEKLLQRTKDITIGDSLKEDVWMGPIASKNQLDNCLSYIEKGKQEGASLLIGGE- 359 IY+ F EK++ R + I +G L + MG ASK+Q + LSYI+ GKQEGA +L GGE Sbjct: 316 IYDAFMEKVIARAEAIQMGHPLDKTTMMGAQASKDQFEKILSYIDIGKQEGAEVLTGGEV 375 Query: 360 -KLENGKYQNGYYVQPAIFDNVTSEMTIAQEEIFGPVIALIKVDSIEEALNIANDVKFGL 418 KL +G +NGYYV+P + ++M + QEEIFGPV ++ +EEA++I+ND +GL Sbjct: 376 AKLNSG-LENGYYVKPTLLKG-HNKMRVFQEEIFGPVCSVATFKDVEEAISISNDTLYGL 433 Query: 419 SASIFTENIGRMLSFIDEIDAGLVRINAESAGVELQAPFGGMKQS 463 A ++T + I AG V +N A APFGG K+S Sbjct: 434 GAGVWTRDAHEAYQVPRAIKAGRVWVNCYHA-YPAHAPFGGYKKS 477 Lambda K H 0.315 0.132 0.374 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 576 Number of extensions: 32 Number of successful extensions: 7 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 488 Length of database: 509 Length adjustment: 34 Effective length of query: 454 Effective length of database: 475 Effective search space: 215650 Effective search space used: 215650 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.3 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.5 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory