Align General amino-acid permease GAP2 (characterized)
to candidate RR42_RS11100 RR42_RS11100 gamma-aminobutyrate permease
Query= SwissProt::A0A1D8PK89 (588 letters) >lcl|FitnessBrowser__Cup4G11:RR42_RS11100 RR42_RS11100 gamma-aminobutyrate permease Length = 509 Score = 344 bits (882), Expect = 6e-99 Identities = 180/465 (38%), Positives = 272/465 (58%), Gaps = 8/465 (1%) Query: 77 LTRSLKNRHLQMIAIGGSIGTGLFVGSGSSLHTGGPAGLLIAYILIGTMIYCTVMSLGEL 136 L R LK RHL MIAIGG++GTGLFV SG+S+ GP G L+ Y LIG M+YC + SLGEL Sbjct: 18 LQRKLKARHLTMIAIGGAVGTGLFVASGASISQAGPGGALLMYCLIGLMVYCLMTSLGEL 77 Query: 137 AVTFPVSGAFVTYNSRFIDPSWGFAMAWNYAMQWLVVLPLELVAAAMTVKYWDAKTNSAA 196 AV PV+G+FVTY++ +++ +GFA+ W+Y V + +EL AA + ++YW + Sbjct: 78 AVHMPVAGSFVTYSALYVEEGFGFALGWSYWFSLAVTIAVELAAAQLVMQYWFPHVSGVV 137 Query: 197 FVVIFYVLIVAINFFGVRGYGEAEFIFSAVKVLAVLGFIILGIVLCAG---GGPQGGYIG 253 + F +L+ +N F VRG+GEAE+ F+ +KV +L F+ G+++ G GGPQ G+ Sbjct: 138 WSAGFLLLMFGLNAFSVRGFGEAEYWFALIKVATILIFLAAGLMMIFGIMQGGPQSGW-- 195 Query: 254 GKNWYIEGAPFPNGAKGVITVFVNAAFAFAGTELCGLAAAETENPRKSLPKACKQVFWRI 313 N+ + APF G + V + A F+F GTE G+AA E +P +++P+A +Q FWRI Sbjct: 196 -HNFTLGDAPFVGGIPAMFGVAMIAGFSFQGTETVGVAAGEAADPARTIPRAIRQTFWRI 254 Query: 314 TLFYVICLTLVGLLVPWNDERLLGSSSADASASPFVISIRNAGIKGLPSVMNVVIMIAVL 373 LFYV+ + ++G+L+P+ D LL + D SPF + R+AG+ +MN V++ A+L Sbjct: 255 LLFYVLAILIIGVLIPYTDPSLLRNDVTDIGVSPFALVFRHAGLAFAAGLMNAVVLTALL 314 Query: 374 SVGNSSVYGSSRTLAALAASNQAPKIFGYIDKQGRPLVGIIAQLLVGLLCFLAASDKQGE 433 S G SS+Y S+R L LA S +AP+ + G P V + A VG LCFL++ Sbjct: 315 SAGTSSMYASTRILYGLAVSGRAPRALARLSANGVPYVALFATTAVGALCFLSSLFGDKA 374 Query: 434 VFNWLLALSGLSSIFTWGSINVCLIRFRRALAAQGRDTGELVFTSQVGVIGAIWGAFLNT 493 V+ WLL SG++ W I + RFRR L QG +L + S + G ++ L Sbjct: 375 VYLWLLNTSGMTGFIAWLGIAISHYRFRRGLVHQGYKPSDLAYRSPLYPFGPLFAIVLCV 434 Query: 494 VVLCLQFWIAVWPLHSSPSAEAFFSAYLTVPVVIVFYVGHKLWTK 538 V++ Q + A + Y+ VP+ +V ++G++L K Sbjct: 435 VIVLGQNYQAFSDVRG--RWLEIVGTYIGVPLFLVLWLGYRLVKK 477 Lambda K H 0.324 0.139 0.431 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 775 Number of extensions: 33 Number of successful extensions: 1 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 588 Length of database: 509 Length adjustment: 36 Effective length of query: 552 Effective length of database: 473 Effective search space: 261096 Effective search space used: 261096 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 15 ( 7.0 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 40 (21.5 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory