GapMind for catabolism of small carbon sources

 

Alignments for a candidate for lhgD in Cupriavidus basilensis 4G11

Align L-2-hydroxyglutarate dehydrogenase, mitochondrial; EC 1.1.99.2 (characterized)
to candidate RR42_RS06495 RR42_RS06495 FAD-dependent oxidoreductase

Query= SwissProt::Q9LES4
         (483 letters)



>FitnessBrowser__Cup4G11:RR42_RS06495
          Length = 368

 Score =  380 bits (975), Expect = e-110
 Identities = 199/402 (49%), Positives = 270/402 (67%), Gaps = 37/402 (9%)

Query: 78  ERVDTVVIGAGVVGLAVARELSLRGREVLILDAASSFGTVTSSRNSEVVHAGIYYPPNSL 137
           E+VD VVIGAGVVGLAVAR+L+++GREV+IL+A ++FGT+TS+RNSEV+HAGIYYP  SL
Sbjct: 2   EQVDCVVIGAGVVGLAVARQLAMQGREVIILEAENAFGTITSARNSEVIHAGIYYPAGSL 61

Query: 138 KAKFCVRGRELLYKYCSEYEIPHKKIGKLIVATGSSEIPKLDLLMHLGTQNRVSGLRMLE 197
           KA  CVRG+ +LY YC+ + I H++ GKLIVAT  +++  L+ +      N V  L++L 
Sbjct: 62  KAAMCVRGKAMLYDYCASHHIQHQRCGKLIVATTEAQVATLEAIRAKAAANGVHDLQLLS 121

Query: 198 GFEAMRMEPQLRCVKALLSPESGILDTHSFMLSLVEKSFDFMVYRDNNNLRLQGEAQNNH 257
             EA  +EP L+C  ALLS  +GI+D+H  ML+L+                  G+A+N  
Sbjct: 122 QAEAQALEPNLQCRAALLSASTGIVDSHGLMLALL------------------GDAENAG 163

Query: 258 ATFSYNTVVLNGRVEEKKMHLYVADTRFSESRCEAEAQLELIPNLVVNSAGLGAQALAKR 317
           A  +  + V +G V    + L V       S+ EA A   L+   V+NSAGL A ALA+ 
Sbjct: 164 AMLAVQSPVASGAVMPDGIRLDVG------SQDEA-AGTTLLARTVINSAGLSAPALARS 216

Query: 318 LHGLDHRFVPSSHYARGCYFTLSGIKAPPFNKLVYPIPEEGGLGVHVTVDLNGLVKFGPD 377
           + G+    VP  +YA+GCYFTL+G    PF++L+YP+PE  GLGVH+T+DL G  +FGP+
Sbjct: 217 IEGMPGAHVPPQYYAKGCYFTLAG--RAPFSRLIYPVPEAAGLGVHLTIDLGGQARFGPN 274

Query: 378 VEWIECTDDTSSFLNKFDYRVNPQRSEKFYPEIRKYYPDLKDGSLEPGYSGIRPKLSGPK 437
           V WI+          + +Y V+P  ++ FY E+R Y+P L DG+L+PGY+GIRPK+SGP 
Sbjct: 275 VRWID----------EIEYGVDPADADSFYGEVRNYWPGLADGALQPGYAGIRPKISGPG 324

Query: 438 QSPADFVIQGEETHGVPGLVNLFGIESPGLTSSLAIAEHIAN 479
           +  ADF I G  THGVPGLVNLFGIESPGLTSSLA+AEH+A+
Sbjct: 325 EPAADFRIDGPATHGVPGLVNLFGIESPGLTSSLALAEHVAS 366


Lambda     K      H
   0.318    0.136    0.401 

Gapped
Lambda     K      H
   0.267   0.0410    0.140 


Matrix: BLOSUM62
Gap Penalties: Existence: 11, Extension: 1
Number of Sequences: 1
Number of Hits to DB: 481
Number of extensions: 18
Number of successful extensions: 4
Number of sequences better than 1.0e-02: 1
Number of HSP's gapped: 1
Number of HSP's successfully gapped: 1
Length of query: 483
Length of database: 368
Length adjustment: 32
Effective length of query: 451
Effective length of database: 336
Effective search space:   151536
Effective search space used:   151536
Neighboring words threshold: 11
Window for multiple hits: 40
X1: 16 ( 7.4 bits)
X2: 38 (14.6 bits)
X3: 64 (24.7 bits)
S1: 41 (21.7 bits)
S2: 50 (23.9 bits)

This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.

Links

Downloads

Related tools

About GapMind

Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.

A candidate for a step is "high confidence" if either:

where "other" refers to the best ublast hit to a sequence that is not annotated as performing this step (and is not "ignored").

Otherwise, a candidate is "medium confidence" if either:

Other blast hits with at least 50% coverage are "low confidence."

Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:

GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).

For more information, see:

If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know

by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory